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chiral point (µ 6= 1) smoothly limit to the LCFT ones as µ → 1. Away from the chiral
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1 Introduction

Although three-dimensional Einstein gravity is locally trivial, this is generally no longer

the case once higher-derivative terms are added to the action. The addition of such terms

provides the theory with propagating degrees of freedom, i.e. three-dimensional gravitons.

The quantization of such theories therefore appears to give a richer structure than the

Einstein theory, yielding potentially interesting toy models for higher-dimensional theories

of quantum gravity.

Unfortunately, the addition of generic higher-derivative terms to the Einstein-Hilbert

action often gives ghost-like excitations which render the theory unstable. Recently a

renewed interest has been taken in the so-called topologically massive (cosmological) grav-

ity [1, 2], or TMG for short. This theory consists of the Einstein-Hilbert action with a

negative cosmological constant plus a gravitational Chern-Simons term

Scs =
1

32πGNµ

∫

d3x
√
−Gǫλµν

(

Γρ
λσ∂µΓσ

ρν +
2

3
Γρ

λσΓσ
µτΓτ

νρ

)

. (1.1)

Although adding a Chern-Simons term likely leads to instabilities for general values of

the dimensionless parameter µ, it was argued in [3] that the theory becomes stable and

chiral when µ = 1. At that point, which we will call the “chiral point”, all the left-

moving excitations of the theory would become pure gauge and one would effectively have

a right-moving theory.

Other authors however found non-chiral modes at the chiral point, [4–11] (see however

also [12]). In particular in [5] a left-moving excitation of the linearized equations of motion

was explicitly written down1. From the transformation properties of the new mode of [5]

under the (L0, L̄0) operators one found a structure typical of a logarithmic conformal field

theory (LCFT) and consequently it was claimed that the theory with µ = 1 was dual to

such a theory. Since LCFTs are not chiral (and not unitary either), this provided a further

argument against the conjecture.

However, near the conformal boundary the new mode does not obey the same falloff

conditions as the other modes. This has led to claims that one can ignore the new mode

by imposing strict ‘Brown-Henneaux’ [15] boundary conditions: the new mode does not

1Solutions of the non-linear equations of motion exhibiting similar asymptotic form were presented earlier

in [13, 14].

– 1 –
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satisfy these so it then has to be discarded and the resulting theory could again be chi-

ral [16]. In [10] a non-chiral mode of the linearized equations of motion, related to that

of Grumiller and Johansson but satisfying the Brown-Henneaux boundary conditions, was

found. However, [17] argued that this mode is not a linearization of a non-linear solution.

This linearization instability was further discussed in [18]. On the other hand, in [19, 20]

it was claimed that the Brown-Henneaux boundary conditions could be relaxed to incor-

porate the non-chiral mode without destroying the consistency of the theory. At first sight

one seems to be free to choose either set of boundary conditions, supposedly leading to a

different theory for each possibility [17].

The topologically massive theory admits solutions that are asymptotically AdS so

one can use the AdS/CFT correspondence to analyze the theory. This is the viewpoint

pursued in this paper. One of the cornerstones of the AdS/CFT correspondence is that the

boundary fields parameterizing the boundary conditions of the bulk fields are identified

with the sources for the dual operators. It follows that the leading boundary behavior

must be specified by unconstrained fields, whereas the subleading radial behavior of the

fields is determined dynamically by the equations of motion and should not be fixed by

hand. Putting it differently, the subleading radial behavior is obtained by finding the most

general asymptotic solution to the field equations given boundary data. For theories that

admit asymptotically locally AdS solutions the most general asymptotic solution, which

is sometimes called the “Fefferman-Graham” expansion, can always be found by solving

algebraic equations, see [21] for a review. We would like to emphasize that the Fefferman-

Graham expansion does not have a predetermined form, as is sometimes stated in the

literature, but rather the form of the expansion is dynamically determined.

For theories that admit asymptotically (locally) AdS solutions finite conserved charges

can always be obtained [22–27] via the formalism of holographic renormalization [21]. In

particular, ref. [27] provides a first principles proof that the holographic charges are the

correct gravitational conserved charges for Asymptotically locally AdS spacetimes. One

should contrast the logic here with what is usually done in other papers. The discus-

sion there starts by selecting fall off conditions for all fields, for example Brown-Henneaux

boundary conditions, such that interesting known solutions (such as black holes etc.) are

within the allowed class and then it is checked whether these boundary conditions lead to

finite conserved charges. On the other hand, here we start by deriving the most general

Asymptotically locally AdS boundary conditions. Finite conserved charges (which satisfy

all expected properties) are guaranteed by the general results of [27]. Note that the finite

conserved charges are related to the 1-point function of the dual energy momentum tensor

via the AdS/CFT dictionary. The next simplest quantities to compute are the 2-point func-

tions of the dual operators. These are obtained from solutions of the linearized equations

of motion with Dirichlet boundary conditions.

In this paper we develop the AdS/CFT dictionary for topologically massive gravity.

We obtain the most general asymptotic solutions that are Asymptotically locally AdS and

compute the holographic one- and two-point functions of the theory at and away from the

chiral point. One new feature in this case is that the field equations are third order in

derivatives. Ordinarily higher derivative terms are treated as perturbative corrections to

– 2 –
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two derivative actions and as such they do not change the usual AdS/CFT set-up. In the

case of TMG, however, we need to treat the Einstein and Chern-Simons terms on equal

footing. The fact that the field equation is third order implies that there is an additional

piece of boundary data to be specified. This means that we can fix both a boundary metric

(or more precisely, a conformal class) and (part of) the extrinsic curvature. The boundary

metric acts as a source for the boundary stress energy tensor, while the field parametrizing

the boundary condition for the extrinsic curvature is a source for a new operator. It turns

out that this operator is irrelevant when µ > 1 and it becomes the logarithmic partner of

the stress energy tensor as µ → 1.

The asymptotic expansion at µ = 1 contains the subleading log piece found earlier

in [5]. The coefficient of this term corresponds to the 1-point function of the logarithmic

partner of the energy momentum tensor. As this operator is obtained as a limit of an

irrelevant operator, its source (as usual) should be treated perturbatively. This source,

which is the above mentioned boundary condition for the extrinsic curvature, appears as

the coefficient of a leading order log term in the solution to the linearized equations of

motion (not to be confused with the subleading log of [5] which relates to the 1-point

function of this operator). The results for the two-point functions at µ = 1 completely

agree with LCFT expectations and the results away from µ = 1 smoothly limit to the

µ = 1 results. Bulk instabilities when µ 6= 1 due to negative energy modes also neatly map

to properties of the boundary theory, namely negative norm states and correspondingly

negativity of the expectation value of the energy momentum tensor in these states.

The remainder of the paper is structured as follows. After discussing some conventions

and giving the equations of motion, we review in section 3 the standard AdS/CFT dictio-

nary, in particular the definition of Asymptotically locally AdS spacetimes, and point out

several subtleties which will be crucial in its application to TMG. In section 4 we analyze

the asymptotic structure of the bulk solutions for µ = 1. We compute the on-shell action,

discuss its divergences and the holographic renormalization which enables us to concretely

formulate the holographic dictionary. The holographic one point functions satisfy anoma-

lous Ward identities whose interpretation is discussed in section 5. Section 6 concerns

linearized analysis which is used to compute holographically one- and two-point functions

for µ = 1. We then repeat this analysis for general µ in section 7. We end with a short

summary and an outlook. Various appendices contain computational details as well as a

discussion of some relevant aspects of logarithmic CFTs.

2 Setup and equations of motion

The bulk part of the action has the form:

S =
1

16πGN

∫

d3x
√
−G(R − 2Λ)

+
1

32πGNµ

∫

d3x
√
−Gǫλµν

(

Γρ
λσ∂µΓσ

ρν +
2

3
Γρ

λσΓσ
µτΓτ

νρ

)

,

(2.1)

where we use the covariant ǫ-symbol such that
√
−Gǫ012 = 1 with x2 the radial direc-

tion denoted ρ below. We set Λ = −1 below. We use the following conventions for the

– 3 –
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curvatures:

R σ
µνρ = ∂νΓσ

µρ + Γλ
µρΓ

σ
νλ − (µ ↔ ν), Rµρ = R σ

µσρ . (2.2)

All Greek indices run over three dimensions, all Latin indices over two dimensions. In three

dimensions the Weyl tensor vanishes identically, which means that:

Rµνρσ = GµρRσν − GνρRσµ − 1

2
RGµρGσν − (ρ ↔ σ). (2.3)

The equation of motion derived from (2.1) becomes:

Rµν − 1

2
GµνR − Gµν +

1

µ
Cµν = 0, (2.4)

with Cµν the Cotton tensor:

Cµν = ǫ αβ
µ ∇α(Rβν − 1

4
RGβν). (2.5)

Using (2.3) we find that the Bianchi identity becomes:

Cµν − Cνµ = 0 . (2.6)

The last term in the r.h.s. of (2.5) is totally antisymmetric in µ and ν and therefore

merely subtracts the antisymmetric piece from the first term in the r.h.s. of (2.5). We

alternatively have:

Cµν =
1

2

(

ǫ ρσ
µ ∇ρRσν + ǫ ρσ

ν ∇ρRσµ

)

. (2.7)

It is not hard to verify that

Cµ
µ = 0, ∇µCµν = 0 . (2.8)

Taking the trace of (2.4) we therefore find that:

R = −6, (2.9)

independent of µ. Substituting this back, we find:

Rµν + 2Gµν +
1

µ
ǫ ρσ
µ ∇ρRσν = 0, (2.10)

from which we also obtain that any solution to the Einstein equations has Rµν = −2Gµν

and is a solution to these equations as well.

3 Asymptotically AdS spacetimes and holography

In this section we will explain what Asymptotically (locally) AdS, or A(l)AdS spacetimes

are and their role in the AdS/CFT correspondence. Reviews of the mathematical aspects

discussed here can be found in [28, 29]. After introductory comments that are gener-

ally applicable, we highlight two aspects of the framework that will be important for its

application to TMG, namely irrelevant deformations and higher-derivative terms.

– 4 –
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3.1 Conformally compact manifolds

First of all, we define a D-dimensional conformally compact manifold-with-metric (M,G)

as follows. Let M be the interior of a manifold M̄ with boundary ∂M .2 Suppose there

exists a smooth, non-negative defining function z on M̄ such that z(∂M) = 0, dz(∂M) 6= 0

and the metric

G̃ = z2G (3.1)

extends smoothly to a non-degenerate metric on M̄ . We then say that (M,G) is conformally

compact and the choice of a defining function determines a conformal compactification

of (M,G).

The metric G̃ induces a regular metric g(0) on ∂M . This metric depends on the defining

function, as picking a different defining function Weyl rescales g(0). It follows that the pair

(M,G) determine a conformal structure (denoted [g(0)]) at ∂M . We call (∂M, [g(0)]) the

conformal infinity or conformal boundary of (M,G). This construction is same as the

Penrose method of compactifying spacetime by introducting conformal infinity.

If we compute the Riemann tensor of G, we find that near ∂M it has the form:

Rµνρσ = −G̃κλ∇κz∇λz(GµρGνσ − GνρGµσ) + O(z−3). (3.2)

Notice that the leading term is order z−4 as G is order z−2. Taking its trace we obtain that:

R = −D(D − 1)G̃κλ∇κz∇λz + O(z). (3.3)

We see that for a spacetime with constant negative curvature,

R = −D(D − 1), (3.4)

and thus we find to leading order:

G̃κλ∇κz∇λz = 1. (3.5)

The Riemann curvature of such a metric thus approaches that of AdS space with cosmo-

logical constant Λ = −(D−1)(D−2)/2, for which Rµνρσ = −D(D−1)(GµρGνσ −GνρGµσ)

holds exactly. A conformally compact manifold whose metric also satisfies R = −D(D−1)

is therefore also called an Asymptotically locally AdS manifold. Notice that we added the

word ‘local’ because we have not put any requirements on global issues like the topology

of ∂M , which may very well be different from the sphere at conformal infinity of (Eu-

clidean) AdS.

3.2 Fefferman-Graham metric

A main result of Fefferman and Graham [32] is that in a finite neighborhood of ∂M , the

metric of an AlAdS spacetime can always be cast in the form:

ds2 = z−2(dz2 + gijdxidxj), (3.6)

2For the purpose of this introduction we take the manifold to be Euclidean (so in particular ∂M does

not contain initial and final hypersurfaces). The Lorentzian case can be dealt with using the formalism

of [30, 31].

– 5 –
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where the conformal boundary is at z = 0 and the metric g is a regular metric at ∂M ,

which we can write as:

gij(x
k, z) = g(0)(x

k) + . . . , (3.7)

where the dots represent terms that vanish as z → 0. The coordinates in (3.6) are Gaussian

normal coordinates centered at ∂M .

The specific form of the subleading terms, including the radial power where the first

subleading terms appears, depends on the bulk theory under question and is not fixed a

priori. For example, for Einstein gravity in (d + 1) dimensions the expansion reads

gij = g(0)ij + z2g(2)ij + · · · + zd(g(d)ij + h(d)ij log(z)) + · · · (3.8)

The fact that the subleading term starts at order z2 is specific to pure Einstein gravity.

For example, 3d Einstein gravity coupled to matter can have the first subleading term

appearing at order z, see [33] for an example. The logarithmic term h(d) appears in Einstein

gravity when d is an even integer greater than 2. This coefficient is given by the metric

variation of the conformal anomaly [25]. This fact immediately explains why there is no

such coefficient in Einstein gravity when d = 2: in this case the conformal anomaly is given

by a topological invariant and therefore its variation w.r.t. the metric vanishes. As soon as

the bulk action contains additional fields the expansion will be modified accordingly [25, 33–

35]. For example, the asymptotic solution for three dimensional Einstein gravity coupled to

a free massless scalar field is of the form (3.8) with a non-zero h(2) coefficient, see equation

(5.25) of [25]3. Note that the log term found in [5] is precisely of this form. From this

perspective the appearance of such a term in the asymptotic expansion of TMG is certainly

not surprising.

What is universal in this discussion is the structure of these expansions. The sub-

leading coefficients are determined locally in terms of g(0) by solving asymptotically the

field equations. This procedure leads to algebraic equations that can be readily solved.

On the other hand, g(d) is not locally determined by g(0) but rather by global constraints

like regularity of the bulk metric in the interior of M . This term is related to the 1-point

function of Tij .

To repeat, according to the standard AdS/CFT dictionary the allowed subleading

terms in expansions like (3.8) (and (3.9) below) are determined by the equations of motion

rather than fixed by hand. As long as g is regular for z = 0 and therefore of the form (3.7),

the aforementioned AlAdS properties of (M,G) are unchanged. In the context of TMG

this in particular implies that we allow the logarithmic mode found in [5].

3.3 Boundary conditions and dual sources

According to the AdS/CFT dictionary [37, 38], the coefficients of the leading terms in the

radial expansion of the metric and the various matter fields are sources for corresponding

gauge-invariant operators in the CFT. For example, g(0) specifies a boundary metric which

3 Ref. [36], appendix E, contains an example of 3d gravity coupled to scalars with log2 terms in the

asymptotic expansion.

– 6 –
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becomes the source for the energy-momentum tensor of the boundary theory. Similarly, a

bulk scalar field Φ of mass m has the allowed asymptotic behavior:

Φ = φ(0)z
d−∆ + . . . + φ(2∆−d)z

∆ + . . . (3.9)

with m2 = ∆(∆ − d). We then interpret the leading term φ(0) as the source for a scalar

operator O of scaling dimension ∆ dual to Φ.

In field theory, one computes the partition function as a functional of sources and the

same story applies in AdS/CFT. The sources like φ(0) and g(0) determine the asymptotic

(Dirichlet) values of a bulk solution to the equation of motion. The aim is now to find

this bulk solution and subsequently compute its on-shell action. Since the solution of the

equations of motion is a function of φ(0) and g(0), so is the corresponding on-shell action.

However, the naive action is always infinite (for example, the Einstein-Hilbert term is

proportional to the volume of spacetime which always diverges for an AlAdS spacetime).

We therefore need to regularize and then renormalize the computation of the on-shell

action. This holographic renormalization of the on-shell action depends crucially on the

asymptotic properties of the metric (which in our case is AlAdS) and this is the place where

the above framework finds a practical application.

Holographic renormalization is implemented as follows, see [21] for a more complete

discussion. One first puts the boundary of the spacetime at finite z0 rather than at z = 0

and then evaluates the on-shell action for this regulated solution. One finds divergences

as z0 → 0 which can however be cancelled by adding local counterterms to the action. To

maintain covariance, these counterterms should be functionals of the induced metric and

other fields on the slice given by z = z0. Adding then the counterterms to the on-shell

action, one finds that the total action is finite as z0 → 0.

Once the on-shell action is renormalized and finite, one can compute one-point func-

tions in the presence of sources by functionally differentiating the renormalized on-shell

action with respect to the sources like g(0) and φ(0). These one-point functions involve

the nonlocally determined pieces called g(d)ij and φ(2∆−d) and in general contain also local

terms, some of which are related to anomalies and others that are scheme dependent. One

can obtain higher-point functions by taking further derivatives of the one-point functions

and the local terms lead to contact terms in n-point functions.

Notice that the counterterms are also necessary for the appropriate variational principle

to hold: for AlAdS spacetimes one fixes g(0) (or rather its conformal class) instead of the

induced boundary metric g/z2
0 which would diverge as z0 → 0. This is discussed in detail

in [27].

3.4 Sources for irrelevant operators

The fact that an asymptotically AdS metric becomes that of AdS near conformal infinity

is dual to the statement that the boundary theory becomes conformal at high energies.

Asymptotically AdS metrics describe relevant deformations of the CFT and/or vevs in the

boundary theory.

On the other hand, one may also attempt to switch on sources for irrelevant operators.

Such deformations are for example necessary to compute correlation functions of irrelevant

– 7 –
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operators, as these are obtained by functionally differentiating the on-shell action with

respect to these sources. Switching on these sources spoils the conformal UV behavior of

the field theory. Correspondingly, the bulk solutions will no longer be AlAdS and the usual

AdS/CFT dictionary would break down. In particular, the usual counterterms no longer

suffice to make the on-shell action finite, completely analogous to the nonrenormalizability

of the field theory with such sources.

A consistent perturbative approach may however be set up by treating the sources for

irrelevant operators as infinitesimal [25]. In the bulk, this means that one starts from an

AlAdS solution and computes the bulk solution and the on-shell action to any given order

n in the sources. This approximation allows for the computation of n-point functions of

the irrelevant operator in any given state dual to the background AlAdS solution. We will

see a concrete example worked out below.

3.5 Higher-derivative terms

Higher-derivative terms in the bulk action are usually treated perturbatively and in that

case do not directly lead to a change in the setup described above. However, for TMG

we cannot afford to treat these terms as perturbations as we want to study the complete

theory around µ = 1. The solution to the bulk equations of motion is then generally no

longer fixed by the specification of Dirichlet data alone and some extra boundary data is

needed; for example the z-derivatives of the metric gij at the boundary. Correspondingly,

the on-shell action depends on these boundary data as well. We shall see below that this

is precisely what happens for TMG.

Extending the usual AdS/CFT logic, we interpret the new boundary data as a new

source for another operator in the field theory. Functionally differentiating the on-shell

action with respect to this new boundary data then yields correlation functions of this new

operator. To make contact with earlier results, notice that for TMG this operator creates

the massive graviton states in the bulk and for µ = 1 it creates the logarithmic solution

found in [5]. One may say that these spaces have only a single operator insertion in the

infinite past.

It turns out that this new operator is irrelevant for µ > 1, as for µ ≥ 1 we find

that switching on the corresponding source spoils the AlAdS properties of the spacetime.

Following the discussion of the previous subsection, we therefore will have to treat the

source as infinitesimal and approach the problem perturbatively to a given order in the

source. This is precisely what we will do in section 6.2.2.

4 Asymptotic analysis for µ = 1

In this section we return to TMG and carry out an asymptotic analysis of the equations

of motion (2.4) in the Fefferman-Graham coordinate system. Note that because of (2.9)

all conformally compact solutions of this theory are asymptotically locally AdS. However,

not all solution of TMG are conformally compact. For example, the ‘warped’ solutions

of [39] have a degenerate boundary metric, as is demonstrated in appendix E, and thus

they are not conformally compact. In this section we restrict to the AlAdS case. We

– 8 –
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compute the on-shell action, discuss the variational principle in detail and demonstrate

how one holographically computes one-point functions in the CFT. As indicated in the

previous section, we will find irrelevant operators and therefore the complete holographic

renormalization of the on-shell action has to be done perturbatively. This is postponed until

the next section, where we will renormalize the action to second order in the perturbations.

Although this and the next section focus on the case µ = 1, µ is sometimes reinstated

for later convenience.

4.1 Fefferman-Graham equations of motion

Following the discussion in section 3.2, we take the metric to be of the form:

ds2 =
dρ2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj (4.1)

where we defined ρ = z2. As should be clear from the previous section, this form of

the metric is not an ansatz but it is a direct consequence of the AlAdS property of the

spacetime. In other words, the metric of any AlAdS spacetime can be brought to this form

near the conformal boundary. In this coordinate system the equations of motion (2.4) take

the following form. For the component equations we find:

−1

2
tr(g−1g′′) +

1

4
tr(g−1g′g−1g′) +

1

4µ
ǫij
(

∇i∇kg′kj + 2ρ(g′′g−1g′)ji
)

= 0,

(

1

2
tr(g−1g′′) − 1

4
[tr(g−1g′)]2

)

gij − g′′ij +
1

2
g′ijtr(g

−1g′)

+
1

µ
ǫ k
i

{

1

4
∇k∇mg′mj +

1

4
∇j∇mg′mk − 1

2
∇k∇j[tr(g

−1g′)] + 2ρg′′′jk+

g′′kj

[

3 − 3

2
ρtr(g−1g′)

]

+ g′kj

(

− 3

2
tr(g−1g′) +

3

4
ρ[tr(g−1g′)]2

−7

2
ρtr(g−1g′′) +

7

4
ρtr(g−1g′g−1g′)

)}

+ i ↔ j = 0,

(gkj − µǫkj)∇kg
′
ij −∇i

(

tr(g−1g′) +
1

2
ρtr(g−1g′g−1g′) − ρ[tr(g−1g′)]2

)

+2ρ∇n
(

g′′in − tr(g−1g′)g′in
)

+ ρ(g−1g′)ki ∇lg′kl = 0 ,

(4.2)

whereas the trace equation R = −6 becomes:

− 4ρtr(g−1g′′) + 3ρtr(g−1g′g−1g′) − ρ[tr(g−1g′)]2 + R(g) + 2tr(g−1g′) = 0. (4.3)

A prime denotes a derivative with respect to ρ. The derivation of these equations is given

in appendix A.

4.2 Asymptotic solution

Rather than the usual asymptotic behavior limρ→0 gij(ρ, xk) = g(0)ij(x
k), the equations of

motion for µ = 1 also allow leading log asymptotics for gij . We therefore substitute the
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expansion

gij = b(0)ij log(ρ) + g(0)ij + b(2)ijρ log(ρ) + g(2)ij + . . . (4.4)

into the equations of motion. The subleading logarithmic term b(2)ij in this expansion is the

mode considered in [5]. The leading logarithmic term b(0)ij , on the other hand, changes the

asymptotic structure of the spacetime and it is no longer AlAdS. Following the discussion

in section 3.4, we will treat b(0)ij to be infinitesimal and work perturbatively in b(0)ij . As

we will be interested in two-point functions around a background with b(0)ij = 0, it suffices

to retain only terms linear in b(0)ij in the equations that follow.

Under these conditions we find:

g′ij =
b(0)ij

ρ
+ b(2)ij log(ρ) + b(2)ij + g(2)ij + . . . ,

g′′ij = −
b(0)ij

ρ2
+

b(2)ij

ρ
+ . . . ,

g′′′ij =
2b(0)ij

ρ3
−

b(2)ij

ρ2
+ . . . ,

gij = gij
(0) − bij

(0) log(ρ) − bij
(2)ρ log(ρ) − ρgij

(2) + O(b(0)) + . . . ,

(4.5)

where in the last line indices are raised with g(0) and the O(b(0)) terms are of the form

bi
(2)kbkj

(0)ρ log2(ρ) + gi
(2)kbkj

(0)ρ log(ρ), but will never be needed in what follows.

Substituting this expansion in the equations of motion (4.2) and (4.3), we find the

following. To leading order we find both from the (ρρ) equation as well as from the R

equation that:

tr(b(0)) = 0. (4.6)

Notice that traces are now implicitly taken using g(0), that is tr(b(0)) ≡ gij
(0)b(0)ij . Also, in

this subsection the ǫ-symbol and covariant derivatives are defined using g(0). From the (ij)

equation we find that:

P k
i b(0)kj = 0, (4.7)

where we define the projection operators:

P k
i ≡ 1

2
(δk

i + ǫ k
i ), P̄ k

i ≡ 1

2
(δk

i − ǫ k
i ), (4.8)

and we obtain no new constraint from the (ρi) equation at leading order.

At subleading order we encounter various log terms. From the R equation we find at

order log2(ρ) that

tr(b(2)g
−1
(0)b(0)) = 0 (4.9)

and at order log(ρ) we then find:

− 2tr(b(0)g
−1
(0)g(2)) + 2tr(b(2)) + R̃[b(0)] = 0, (4.10)

with R̃[b(0)] the linearized curvature:

R[g] = R[g(0)] + log(ρ)R̃[b(0)] + . . . , (4.11)
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which can be more explicitly written as:

R̃[b(0)] = ∇i∇jb(0)ij , (4.12)

where we used the properties of b(0)ij found at leading order. At subleading order in the

(ρρ) equation we again obtain (4.9) and (4.10). At order one in the R equation we obtain:

− 2tr(b(2)) + 2tr(g(2)) + R[g(0)] = 0. (4.13)

For the (ij) equation the subleading terms at order log(ρ)/ρ give

(b(0)g
−1
(0)b(2))ij + (b(2)g

−1
(0)b(0))ij = 0, (4.14)

and at order 1/ρ we obtain:

P̄ k
i b(2)kj =

1

2
(b(2)ij − ǫ k

i b(2)kj) = O(b(0)ij), (4.15)

where the right-hand side is an expression linear in b(0)ij that we will not need below.

For the (ρi) equation, we find at subleading order that:

P̄ k
i

(

∇jg(2)jk +
1

2
∇kR[g(0)]

)

= ∇lb(2)li + O(b(0)). (4.16)

We may apply (4.15) to rewrite schematically b(2)ij → P k
i b(2)kj +O(b(0)). Since P k

i and P̄ k
i

are projection operators onto orthogonal subspaces we can split this equation into:

P̄ k
i

(

∇jg(2)jk +
1

2
∇kR[g(0)]

)

= O(b(0)), ∇lb(2)li = O(b(0)). (4.17)

If b(0)ij = 0 then the first of these equations agrees with [40].

4.3 On-shell action

In this section we will write the on-shell action in Fefferman-Graham coordinates and

analyze the divergences obtained by substituting the expansion (4.4).

We begin by computing the on-shell value of the Chern-Simons part of the action,

Ics =
1

32πGNµ

∫

d3x
√
−Gǫλµν

(

Γρ
λσ∂µΓσ

ρν +
2

3
Γρ

λσΓσ
µτΓτ

νρ

)

, (4.18)

in Fefferman-Graham coordinates. Observing that the ǫ-symbol implies that only one of

the indices λ, µ or ν can be the radial direction, we can directly write out the various

terms. Using then (A.2) and (A.4) from appendix A we find that many terms cancel due

to the antisymmetry of ǫij and we are left with:

1

32πGNµ

∫

d3x
√−gǫij

(

2ρ(g′g−1g′′)ij − Γa
ib∂ρΓ

b
aj

)

, (4.19)

where the connection coefficients and ǫ tensor are now those associated with gij . Substi-

tuting (4.4), it is not hard to verify that this action is finite for ρ0 → 0 if b(0)ij = 0, but

there are log divergences if b(0)ij is nonzero.
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For the Einstein-Hilbert action, the variational principle can be made well-defined for

Dirichlet boundary conditions at a finite radial distance by the addition of the Gibbons-

Hawking term. In our conventions, this means that the Einstein part of the action is

given by:

Igr =
1

16πGN

∫

d3x
√
−G(R − 2Λ) +

1

8πGN

∫

d2x
√−γK , (4.20)

where γij = gij/ρ is the induced metric on the cutoff surface ρ = ρ0, which is kept fixed

in the variational problem. Furthermore, K is the trace of the extrinsic curvature of this

surface, which is defined using the outward pointing unit normal nµdxµ = −dρ/(2ρ).

This variational problem becomes ill-posed as ρ0 → 0, since the induced metric γ

diverges in this limit. What one should instead keep fixed is the conformal class of γ

(or g(0) after taking into account the issues related to the conformal anomaly) [27]. This

requires introducing additional boundary terms. These boundary terms not only make

the variational problem well-posed but also make the on-shell action finite as ρ0 → 0. In

particular, for the pure Einstein theory the counterterm action is

Ict =
1

8πGN

∫

d2x
√−γ

(

− 1 +
1

4
R[γ] log(ρ0)

)

. (4.21)

Substituting the Fefferman-Graham form of the metric we find:

Igr = − 1

16πGN

∫

d3x
2

ρ2

√−g +
1

16πGN

∫

d2x
1

ρ

√−g(4 − 2ρtr(g−1g′)),

Ict =
1

8πGN

∫

d2x
√−g

(

− 1

ρ0
+

1

4
R[g] log(ρ0)

)

.

(4.22)

We may now substitute the radial expansion (4.4) for gij and find the same behavior as for

the Chern-Simons part: the action Igr + Ict is finite when b(0)ij = 0 but diverges otherwise.

We now define the following combined action:

Ic = Igr + Ics + Ict, (4.23)

which we emphasize is finite only as long as b(0)ij vanishes and needs to be supplemented

with additional boundary counterterms otherwise. As we explained in section 3, this will

be done perturbatively up to the required order in b(0)ij . We will do an explicit analysis to

second order in section 6, but first we discuss the variational principle and the computation

of the one-point functions in general terms.

4.3.1 Variational principle

In this subsection we compute the variation of the combined action Ic defined

in (4.23), which will be needed below in the holographic computation of boundary

correlation functions.

First of all, the variation of the Einstein-Hilbert action plus Gibbons-Hawking term is

well-known:

δIgr =

∫

d3x(eom) +
1

16πGN

∫

d2x
√−γ[γijK − Kij]δγij , (4.24)
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and in Fefferman-Graham coordinates we find that:

δIgr =

∫

d3x(eom) +
1

16πGN

∫

d2x
√−g

(

1

ρ
gij + g′ij − gijtr(g−1g′)

)

δgij ,

δIct = − 1

16πGN

1

ρ

∫

d2x
√−ggijδgij .

(4.25)

As for the Chern-Simons part, we find that

δIcs =
1

32πGNµ

∫

d3x
√
−GǫλµνCρ

λσR σ
νµρ +

1

32πGNµ

∫

d2x
√−γǫλµνnµΓρ

λσCσ
νρ, (4.26)

with

Cλ
µν = δΓλ

µν =
1

2
Gλσ(∇µδGνσ + ∇νδGµσ −∇σδGµν) (4.27)

and nµ the outward pointing unit normal to the boundary and γij the induced metric on

the boundary. Integrating the bulk part once more by parts, we find:

δIcs = − 1

32πGNµ

∫

d3x
√
−Gǫλµν(∇σR ρσ

νµ )δGλρ (4.28)

+
1

32πGNµ

∫

d2x
√−γǫλµν(nµΓρ

λσCσ
νρ + nσR ρσ

νµ δGλρ)

The first term eventually becomes the Cotton tensor in the equation of motion, using (2.3)

and the Bianchi identity.

Substituting now once more the Fefferman-Graham metric (4.1), we find nµdxµ =

−dρ/(2ρ) and the surface terms can be rewritten to yield:

δIcs =

∫

d3x (eom) +
1

16πGNµ

∫

d2x
√−gǫij

(

1

2
Γl

ikδΓ
k
jl + (g′g−1δg)ij − ρ(g′g−1δg′)ij

+ 2ρ(g′′g−1δg)ij − ρ(g′g−1g′g−1δg)ij

)

, (4.29)

with all covariant terms defined using gij . Notice that if b(0)ij = 0 then all terms are finite

in the limit where the radial cutoff ρ0 → 0, in agreement with the above analysis for the

on-shell action.

Combining then (4.25) and (4.29), the variation of the combined action Ic defined

in (4.23) is:

δIc =
1

16πGN

∫

d2x
√
−g
{

g′ij − gijtr(g
−1g′)

}

(g−1(δg)g−1)ij (4.30)

+
1

16πGNµ

∫

d2x
√−g

{

1

2
Aij − 2ρǫ k

i

[

g′′kj −
1

2
(g′g−1g′)kj

]

− ǫ k
i g′kj

}

(g−1(δg)g−1)ij

+
1

16πGNµ

∫

d2x
√−gρǫ k

i g′kj(g
−1(δg′)g−1)ij.

where the term Aij is a local term and is defined via:

∫

d2x
√−gǫijΓl

ikδΓ
k
jl =

∫

d2x
√−gAijδgij . (4.31)
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Explicitly, we find:

Aij =
1

4

[

ǫklgm
i gjn + ǫ l

i gm
j gk

n − ǫ l
j gmkgin + (i ↔ j)

]

∇kΓ
n
lm

=

[

− 1

8
ǫ k
i ǫ l

j ǫmn∇l∂mgnk + (i ↔ j)

]

+
1

4
ǫkl∇k∂lgij .

(4.32)

Notice that the last term in (4.30) involves δg′ij and therefore changes the variational

principle for this action. Although one may explicitly check that it vanishes if b(0)ij = 0

and for ρ0 → 0 [41], this is no longer the case for nonzero b(0)ij . As expected for a three-

derivative bulk action, the on-shell action is a functional of both gij and g′ij at the boundary

and we can take functional derivatives with respect to both of them.

4.4 One-point functions

From the previous section it follows that there are two independent sources that should

be specified at the conformal boundary, which are asymptotically related to gij and g′ij .
According to the asymptotic solution (4.4) obtained in section 4.2 we can indeed indepen-

dently specify both b(0)ij and g(0)ij and one can take these as the two boundary sources.

These fields then source two operators which will be denoted tij and Tij, respectively, with

Tij the usual energy-momentum tensor of the boundary theory. The standard AdS/CFT

dictionary now dictates:

〈Tij〉 =
−4π
√−g(0)

δI

δgij
(0)

, 〈tij〉 =

( −4π
√−g(0)

δI

δbij
(0)

)

L

, (4.33)

where the subscript ‘L’ means a projection onto the chiral traceless component,

(tij)L ≡ P k
i

(

tkj −
1

2
gkjtr(t)

)

, (4.34)

whose origin is explained in the next paragraph. The signs in (4.33) are explained in

appendix B. Notice that the on-shell action I on the right-hand sides of (4.33) coincides

with Ic defined in (4.23) only to zeroth order in b(0)ij , and as explained above additional

boundary counterterms will be needed to render it finite to higher orders in b(0)ij .

The projection onto the ‘L’ component originates as follows. Since P k
i b(0)kj = tr(b(0)) =

0, b(0)ij has only a single nonvanishing component. We can therefore only take functional

derivatives with respect to this component and we find that tij only has one component

as well. For example, when we use lightcone coordinates and the boundary metric is

flat, g(0)ijdxidxj = dudv, then in our conventions (see appendix B) only b(0)uu is nonzero.

Correspondingly, the only non-zero component of tij is tvv and taking the ‘L’ piece projects

onto this component.

To make contact with the regulated on-shell action which explicitly depends on gij and

g′ij , we observe that:

gij
(0) = lim

ρ→0
(gij + ρ log(ρ)g′ij), b(0)ij = lim

ρ→0
ρg′ij , (4.35)

– 14 –
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and therefore the one-point functions can be obtained concretely by computing:

〈tij〉 = lim
ρ→0

( −4π

ρ
√−g

δI

δg′ij
+ log(ρ)

4π√−g

δI

δgij

)

L

,

〈Tij〉 = lim
ρ→0

−4π√−g

δI

δgij
,

(4.36)

which are the main expressions that will be used in the following sections.

4.4.1 Explicit expressions for vanishing b(0)ij

If we set b(0)ij = 0 then the combined action Ic is finite on-shell. Although we then cannot

take functional derivatives with respect to b(0)ij , we can still compute correlation functions

involving the energy-momentum tensor by using the first equation in (4.33) with I = Ic.

Explicitly, this means that we use (4.30) and substitute the expansion (4.4) with b(0)ij = 0.

This leads to the following one-point functions:

〈Tij〉 ≡ lim
ρ→0

−4π√−g

δIc

δgij
(4.37)

=
1

4GN

(

g′ij − gijtr(g
−1g′) − 1

µ

(

1

2
ǫ k
i g′kj + ρǫ k

i g′′kj + (i ↔ j)

)

+
1

2µ
Aij[gij ]

)

=
1

4GN

(

g(2)ij +
1

2
R[g(0)]g(0)ij −

1

2µ

(

ǫ k
i g(2)kj + (i ↔ j)

)

− 2

µ
b(2)ij +

1

2µ
Aij [g(0)ij ]

)

where we defined ǫ k
i using g(0) and also used the various properties of b(2)ij found above,

in particular the condition ǫ k
i b(2)kj = b(2)ij which ensured the absence of a logarithmic

divergence. Notice that an extra sign arises because we functionally differentiate with

respect to the inverse metric, whereas (4.30) uses a variation in the metric itself. The

expression with energy momentum tensor with b(0)ij = b(2)ij = 0 was also derived previously

in [41]. The authors of [5] computed Tij for non-zero b(2)ij and flat g(0). The result in

equation (48) of [5] however is missing the b(2) term.

Using g(0) to raise indices and define covariant derivatives and using the above prop-

erties of b(2)ij and g(2)ij , we find the following Ward identities:

〈T i
i 〉 =

1

4GN

(

1

2
R[g(0)] +

1

2µ
Ai

i[g(0)]

)

,

∇j〈Tij〉 =
1

4µGN

(

1

4
ǫij∇jR[g(0)] +

1

2
∇jAij [g(0)]

)

.

(4.38)

These results agree with analogous computations in [25, 40]. We will discuss their inter-

pretation in the next section.

Example: conserved charges for the BTZ black hole. The holographic energy

momentum can be used to compute the conserved charges, namely the mass and the angular

momentum, for the rotating BTZ black hole. The metric can be written in Fefferman-
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Graham coordinates as:

ds2 =
dρ2

4ρ2
−
[

1

ρ
− 1

2
(r2

+ + r2
−) +

1

4
(r2

+ − r2
−)2ρ

]

dt2

+

[

1

ρ
+

1

2
(r2

+ + r2
−) +

1

4
(r2

+ − r2
−)2ρ

]

dφ2 + 2r+r−dtdφ,

(4.39)

from which we find the following one-point function (using ǫtφ = −1):

〈Ttt〉 = 〈Tφφ〉 =
1

8GN

(

r2
+ + r2

− +
2

µ
r+r−

)

,

〈Ttφ〉 =
1

8GN

(

2r+r− +
1

µ
r2
+ + r2

−

)

.

(4.40)

Notice that our normalization of the energy-momentum tensor differs by a factor of 2π

from that used in much of the AdS/CFT literature. We obtain the conserved charges:

M = −
∫

dφT t
t =

π

4GN

[

r2
+ + r2

− +
2

µ
r+r−

]

,

J = −
∫

dφT t
φ =

π

4GN

[

2r+r− +
1

µ
(r2

+ + r2
−)

]

.

(4.41)

Up to the change in the overall normalization, these expressions agree with [41, 42] and in

the Einstein case µ → ∞ they reduce to the usual expressions. In lightcone coordinates

u = t + φ, v = −t + φ we find that

〈Tuu〉 =
1

GN

((

1 +
1

µ

)

(r2
+ + r2

−) + 2

(

1

µ
+ 1

)

r+r−

)

,

〈Tvv〉 =
1

GN

(

(

1 − 1

µ

)

(r2
+ + r2

−) + 2

(

1

µ
− 1

)

r+r−

)

.

(4.42)

so when µ = 1 only Tuu is nonzero.

5 Anomalies

In this section we will discuss and interpret the anomalous Ward identities (4.38). We

will first consider the diffeomorphism anomaly and show that it agrees exactly with the

expression expected from Wess-Zumino consistency conditions. We then discuss the Weyl

anomaly and again find agreement with field theory expectations.

5.1 Diffeomorphism anomaly

The diffeomorphism Ward identity from (4.38) for µ = 1 reads

∇j〈Tij〉 =
1

4GN

(

1

4
ǫ k
i ∇kR[g(0)] +

1

2
∇jAij[g(0)]

)

. (5.1)

The right-hand side is the diffeomorphism anomaly of the theory. A more explicit expres-

sion can be obtained following [43]. Consider a vector field ζi. Then, under a diffeomor-

phism along ζi the metric change δgij = ∇iζj +∇jζi results in the following change in the

connection coefficients:

δΓk
ij = ζm∂mΓk

ij + (∂iζ
m)Γk

mj + (∂jζ
m)Γk

im − Γm
ij ∂mζk + ∂i∂jζ

k. (5.2)
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We may substitute this in (4.31) and find that:

− 2

∫

d2x
√−gζj∇iA

ij

=

∫

d2x
√−gǫijΓl

ik

(

ζm∂mΓk
jl + (∂jζ

m)Γk
ml + (∂lζ

m)Γk
jm − Γm

jl∂mζk + ∂j∂lζ
k
)

=

∫

d2x
√−g

(

− ζmΓi
mjRǫ j

i − (∂jζ
i)Rǫ j

i − (∂jζ
i)ǫkl∂kΓ

j
li

)

=

∫

d2x
√−gζi

(

ǫ j
i ∇jR + ǫkl∂j∂kΓ

j
li

)

(5.3)

where the first term on the third line comes from the grouping the first two terms on the

second line; to find it we used that ǫklΓj
kiΓ

n
ljΓ

i
mn = 0 in two dimensions. Substituting the

explicit expression for ∇iAij obtained from (5.3) in (5.1) we obtain:

∇j〈Tij〉 =
−1

16GN
ǫkl∂j∂kΓ

j
li. (5.4)

As explained in [43, 44], this is precisely the two-dimensional diffeomorphism anomaly that

satisfies the Wess-Zumino consistency conditions. In particular, in this case the consistency

condition requires that the anomaly under a diffeomorphism along ζ:

Hζ =

∫

d2x
√−gζi∇j〈Tij〉, (5.5)

satisfies

Eζ1Hζ2 − Eζ2Hζ1 = H[ζ2,ζ1], (5.6)

where Eζ denotes the action of a diffeomorphism with parameter ζ.

The consistent anomaly (5.4) is not covariant [43, 44] and therefore Tij itself is not

a covariant tensor either. One may try to remedy this by finding a symmetric local ‘im-

provement term’ Yij such that the new object T̂ij defined as:

T̂ij = Tij + Yij (5.7)

does transform as a tensor. This implies that ∇iT̂ij is also covariant, resulting in a co-

variant diffeomorphism anomaly [43]. The covariant anomaly does not however satisfy the

consistency conditions [44] and therefore T̂ij is not the variation of an effective action.

To better understand the form (5.1) of the diffeomorphism anomaly, we will now review

the results summarized in [43].4 As we will see shortly, one may obtain the covariant and

the consistent anomaly as well as the improvement term starting from a single polynomial

P (Ω) of degree d/2 + 1 whose arguments are matrix-valued forms Ω. (In this section such

4Our conventions differ as follows. Our Tij has an extra 1/
√
−g as opposed to the analogous object

in [43]; indeed, in our case T̂ij is a tensor whereas in [43] it is a tensor density. The overall sign of the

energy-momentum tensors is however the same. The connection Γk
ij in [43] is defined with an extra minus

sign, but the Riemann curvature has the same sign. Finally, we always use a covariant ǫ-symbol whereas

this is not the case in [43].
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forms are always written using bold face.) Although P generally depends on the theory at

hand, in d = 2 we find that P should be quadratic, leaving us with the unique possibility:

P (Ω) = aTr(Ω ∧ Ω), (5.8)

with a so far arbitrary normalization factor a. We will also write P (Ω1,Ω2) = aTr(Ω1 ∧
Ω2). Following the usual conventions [43, 44], we view the connection coefficients Γk

ij as

matrix-valued one-forms,

Γ ≡ Γk
j = Γk

ijdxi, (5.9)

and the Riemann tensor as a matrix-valued two-form,

R ≡ Rl
k =

1

2
R l

ijk dxi ∧ dxj . (5.10)

The consistent anomaly can be found by solving a set of descent equations which follow

from the consistency condition, see [43]. Using a matrix-valued zero-form v = vj
i = ∂iζ

j,

the end result can be written as:

Hζ ≡
∫

d2x
√−gζi∇jT

ij =

∫

P (dv,Γ). (5.11)

With the above form of P this can be written more explicitly as:

∫

d2x
√−gζi∇jT

ij = −a

∫

Tr(dv ∧ Γ)

= −a

∫

(∂k∂iζ
j)Γi

ljdxk ∧ dxl = −a

∫

d2x
√−gǫkl(∂k∂iζ

j)Γi
lj . (5.12)

Similarly, the covariant anomaly is obtained in [43] as:

∫

d2xζi∇j T̂
ij = 2

∫

P (M,R) = −a

∫

(∇iζ
j)R i

klj dxk ∧ dxl

= −a

∫ √−g(∇iz
j)ǫklR i

klj = −a

∫ √−g(∇iz
j)Rǫ i

j (5.13)

where M = −∇iζ
j is again a matrix-valued 0-form and R is the usual Ricci scalar. Finally,

the improvement term Yij is given as:
∫

d2x
√−gY ijδgij = 2

∫

Tr(δΓ ∧ X) (5.14)

in terms of the variation of the connection and a matrix-valued one-form X given again

in terms of P . We refer to [43] for the exact expression for X, which for d = 2 however

reduces immediately to X = aΓ. We therefore find:
∫

d2x
√−gY ijδgij = 2a

∫ √−gǫij(δΓl
ik)Γk

jl. (5.15)

Let us now compare these results with our holographically computed expressions. Com-

paring (5.4) with (5.12) we find precise agreement provided that:

a =
1

16GN
. (5.16)
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Furthermore, we are now able to understand our original expression (5.1). Namely, it is

exactly of the form:

∇iTij = ∇iT̂ij −∇iYij. (5.17)

To see this, observe that the first term on the right-hand side of (5.1) agrees precisely

with (5.13) and the second term is precisely 1/(8GN )∇iAij as can be seen by compar-

ing (5.15) with (4.31). (This was recently noted in [45] as well.)

Notice that the energy-momentum tensor postulated in [40] does not include the term
1
2Aij that we obtained in (4.37) from the variation of the on-shell supergravity action. The

energy-momentum tensor of [40] is therefore precisely the tensor T̂ij defined above. In

agreement with the above discussion, this T̂ij is not obtained from an on-shell action and

the anomaly found there is precisely the covariant anomaly (5.13).

5.2 Weyl anomaly

For the Weyl anomaly we find from (4.38):

〈T i
i 〉 =

1

8GN

(

R[g(0)] + Ai
i[g(0)]

)

. (5.18)

We have already discussed that the extra term Ai
i[g(0)] can be removed by hand. We then

obtain the trace of the covariant energy-momentum tensor:

〈T̂ i
i 〉 =

1

8GN
R[g(0)]. (5.19)

On the other hand, in our conventions we should have:

〈T̂ i
i 〉 =

cL + cR

24
R[g(0)] (5.20)

and therefore:

cL + cR =
3

GN
(5.21)

which agrees with the analysis in section 6.4.1 below.

6 Linearized analysis

In order to compute correlation functions involving the operator tij as well, we will proceed

perturbatively. In this section we therefore consider small perturbations δGµν = Hµν

around the AdS3 background. We will first linearize the bulk equations of motion and

solve these asymptotically in order to isolate the divergent pieces in the combined action

Ic defined in (4.23). We then renormalize this action to second order in the fluctuations.

Taking functional derivatives as in (4.36), we obtain finite expressions for the one-point

functions of Tij and tij in terms of the subleading coefficients in the radial expansion of

the perturbations. Afterwards, we find the full linearized bulk solutions for Hij so we

can express these subleading pieces as nonlocal functionals of the sources g(0)ij and b(0)ij .

Finally, a second functional derivative then gives all boundary two-point functions involving

Tij and tij. At the end of this section we compare our results with those expected from a

logarithmic CFT (LCFT) and find complete agreement.
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6.1 Linearized equations of motion

We will now linearize the equations of section 4.1 around an empty AdS background solu-

tion. We work in Poincaré coordinates where the background metric Gµν has the form

Gµνdxµdxν =
dρ2

4ρ2
+

1

ρ
ηijdxidxj. (6.1)

An earlier investigation of the linearized equations around this background can be found

in [4, 8]. As we work in Fefferman-Graham coordinates, it is natural to pick a radial-axial

gauge for the fluctuations as well. Thus we set Hρρ = Hρi = 0 and define hij ≡ δgij =

Hij/ρ. We therefore substitute

gij = ηij + hij (6.2)

into the equations of motion (4.2). To leading order in hij we find:

−tr(h′′) +
1

2µ
ǫij∂i∂

mh′
mj = 0,

2ρ∂kh′′
ik + ∂kh′

ik + µǫjk∂kh
′
ij − ∂itr(h

′) = 0,

−h′′
ij + ηij

1

2
tr(h′′)

+
1

µ
ǫ k
i

[

1

4
∂k∂

lh′
lj +

1

4
∂j∂

lh′
lk − 1

2
∂k∂jtr(h

′) + 2ρh′′′
jk + 3h′′

jk

]

+ (i ↔ j) = 0,

(6.3)

and for the trace equation R = −6 we obtain:

− 4ρtr(h′′) + R̃(h) + 2tr(h′) = 0, (6.4)

with R̃[h] the linearized curvature of ηij + hij , which can be explicitly written as

R̃[h] = ∇i∇jhij −∇i∇itr(h) . (6.5)

Notice that all covariant symbols and traces in the above equations are defined using the

background metric ηij.

We also obtained the linearized equations of motion in global coordinates, which can

be found in appendix C. The analysis in global coordinates would be useful should one

want to compute directly5 the correlators of the CFT on R × S1 rather than R2.

6.2 Holographic renormalization

In this subsection we consider the holographic renormalization of the on-shell action. Since

we work at the linearized level, we compute the on-shell action to second order in the

perturbations around the Poincaré background. We isolate the divergences to that order

and compute the necessary covariant counterterms to cancel these divergences.

5Alternatively, one can obtain the correlators on R×S1 from the ones on R2 by using the fact that R×S1

is conformally related to R2 and finite Weyl transformations in the boundary theory can be implemented

by specific bulk diffeomorphisms [26] (whose infinitesimal form was derived first in [46]).
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6.2.1 Asymptotic analysis

We begin by substituting the asymptotic expansion for hij :

hij = b(0)ij log(ρ) + h(0)ij + b(2)ijρ log(ρ) + h(2)ijρ + . . . (6.6)

into the linearized equations of motion (6.3) and (6.4). We find from the linearization of

the asymptotic analysis above that:

tr(b(0)) = 0,

bij + ǫ k
i bkj = 0,

tr(b(2)) = −1

2
R̃[b(0)] = −1

2
∂i∂jb(0)ij ,

tr(h(2)) = −1

2
R̃[h(0)] + tr(b(2)),

b(2)ij − ǫ k
i b(2)kj =

1

2
ηijtr(b(2)) +

1

4
ǫ k
i (∂k∂lb(0)lj + ∂j∂

lb(0)lk),

∂j
(

b(2)ij − 3ǫ k
i b(2)kj + 2P̄ k

i h(2)kj − 2P̄ k
i ηkj(tr(h(2)) + tr(b(2)))

)

= 0,

(6.7)

where all covariant symbols and traces are defined using ηij and R̃[h] again denotes the

linearized curvature of the metric ηij + hij .

6.2.2 On-shell action and counterterms

The next step is to substitute the asymptotic expansion (6.6), together with the con-

straints (6.7), into the on-shell action (4.23). We then isolate the divergences and find the

necessary counterterm action that makes the action finite to second order hij .

Expanding the on-shell action (4.23) in hij , we find that the first-order term vanishes,

since it gives a term proportional to the bulk equations of motion plus the surface terms

of (4.30), which vanish identically for the Poincaré background. At the second order

we find:

I2 =
1

32πGN

∫

d2x
(

h′
ij − ηijtr(h

′) − 2ρǫ k
i h′′

kj − ǫ k
i h′

kj

)

hij . (6.8)

Notice that there are no contributions from the Aij-term for the Poincaré background,

as can be seen easily from its definition (4.31). If we now substitute the expansion (6.6)

and use the linearized equations of motion (6.7) then we find a logarithmic divergence of

the form:

I2 =
1

32πGN

∫

d2x

(

1

2
tr(h(0))R̃[b(0)] − 2b(2)ijb

ij
(0) −

1

2
hk

(0)i∂
i∂jb(0)jk

)

log(ρ) + . . . (6.9)

The next step in the holographic renormalization is to invert the series and rewrite the

divergent terms in terms of hij plus finite corrections. This gives:

log(ρ)b(0)ij = hij + . . . ,

h(0)ij = hij − ρ log(ρ)h′
ij + . . . ,

log(ρ)b(2)ijb
ij
(0) =

1

2
ρh′

ijh
′ij + . . . ,

(6.10)
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and we also have:

tr(h(0))R̃[b(0)] = 2hk
(0)i∂

i∂jb(0)jk − hij∂k∂kb(0)ij , (6.11)

from which we find that this divergence is cancelled by adding the following countert-

erm action:

I2,ct =
1

32πGN

∫

d2x

(

1

4
hij∂k∂khij + ρh′

ijh
′ij − 1

4
hj

i∂
i∂khkj

)

. (6.12)

This action can be written in a covariant form as follows. The background induced metric is

written γij = ηij/ρ and its deviation hij/ρ = σij. The extrinsic curvature Kj
i = −δj

i + ρg′ji
and its deviation is K̃j

i [h] = ρh′j
i . In this notation, the counterterm action becomes:

I2,ct =
1

32πGN

∫

d2x
√−γ

(

1

4
σij∇k∇kσij + K̃ij[h]K̃ij [h] − 1

4
σj

i∇i∇kσkj

)

, (6.13)

where indices are now raised and covariant derivatives and traces are defined using γij.

Notice that the counterterm action involves the extrinsic curvature Kij as well. Such

a term would not be allowed in pure Einstein theory as it would lead to an incorrect

variational principle. On the other hand, for TMG we already found that the variational

principle is different. In particular, the higher-derivative terms allow for the specification

of both γij and Kij at the boundary and therefore we are also allowed to use Kij in the

boundary counterterm action.

6.2.3 One-point functions

For the total action at this order I2,tot = I2 + I2,ct we find the variations:

δI2,tot

δhij
=

1

16πGN

(

h′
ij − ηijtr(h

′) − 2ρǫ k
i h′′

kj − ǫ k
i h′

kj +
1

2
Ãij [h] +

1

4
∂k∂khij −

1

4
∂i∂

khkj

)

,

δI2,tot

δh′ij =
1

16πGN
ρ(δk

i + ǫ k
i )h′

kj , (6.14)

with Ãij[h] the linearization of Aij as defined in (4.31):

Ãij [h] =
1

4
ǫ k
i (∂j∂

lhkl − ∂l∂lhkj) + (i ↔ j). (6.15)

We now substitute the expansion (6.6) and find:

δI2,tot

δhij
=

1

16πGN

{

b(2)ij − 3ǫ k
i b(2)kj + 2P̄ k

i h(2)kj + ηij

(

1

2
R̃[h(0)] + R̃[b(0)]

)

+
1

2
P̄ k

i

(

∂l∂lh(0)kj − ∂j∂
lh(0)lk

)}

,

δI2,tot

δh′ij =
ρ

8πGN
P k

i

(

b(2)kj log(ρ) + b(2)kj + h(2)kj

)

,

(6.16)

where we dropped terms that vanish as ρ → 0 and do not contribute below. In the above

formulas symmetrization in i and j is implicit. When b(0)ij = 0 we can compare the first
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of these expressions with (4.37) and we find that the additional counterterms only change

the local terms.

Using (4.36) and taking into account an extra sign from the fact that gij = ηij − hij ,

we obtain the following explicit expression for the one-point functions:

〈Tij〉 = lim
ρ→0

4π√−η

δI2,tot

δhij

=
1

4GN

{

b(2)ij − 3ǫ k
i b(2)kj + 2P̄ k

i h(2)kj + ηij

(

1

2
R̃[h(0)] + R̃[b(0)]

)

+
1

2
P̄ k

i

(

∂l∂lh(0)kj − ∂j∂
lh(0)lk

)}

,

〈tij〉 = lim
ρ→0

( −4π

ρ
√−g

δI

δh′ij − log(ρ)
4π√−η

δI

δhij

)

L

=
1

2GN

(

b(2)ij + h(2)ij

)

L
,

(6.17)

where we note that the projection to the L-component in 〈tij〉 also removes (divergent)

terms of the form ηij(. . .) or P̄ k
i (. . .)kj. .

6.3 Exact solutions

In this subsection we solve the linearized equations of motion given in section 6.2.1. From

the explicit solutions we find below, we can obtain the subleading terms b(2)ij and h(2)ij

that enter in (6.17) as nonlocal functionals of g(0)ij and b(0)ij . This will allow us to carry

out the second functional differentiation required to obtain the two-point functions.

In explicitly solving the fluctuation equations it is convenient to Wick rotate and work

in Euclidean signature; the procedure for analytic continuation is explained in detail in

appendix B. Concretely, one starts from the metric (6.1), introduces lightcone coordinates

u = t+x, v = −t+x, and replaces v → z, u → z̄ with (z, z̄) complex boundary coordinates.

The background metric then has the form:

ds2 =
dρ2

4ρ2
+

1

ρ
dzdz̄. (6.18)

We will employ the notation ∂ ≡ ∂z and ∂̄ ≡ ∂z̄ below.

In these coordinates, the linearized equations of motion (6.3) and (6.4) become:

−∂̄(1 + µ)h′
zz̄ + ∂(1 + µ)h′

z̄z̄ + 2ρ
(

∂h′′
z̄z̄ + ∂̄h′′

zz̄

)

= 0

∂(1 − µ)h′
zz̄ − ∂̄(1 − µ)h′

zz − 2ρ
(

∂h′′
zz̄ + ∂̄h′′

zz

)

= 0

−∂̄2h′
zz̄ + ∂̄∂h′

z̄z̄ + (3 + µ)h′′
z̄z̄ + 2ρh

(3)
z̄z̄ = 0

−∂2h′
zz̄ + ∂̄∂h′

zz + (3 − µ)h′′
zz + 2ρh(3)

zz = 0

∂2h′
z̄z̄ − ∂̄2h′

zz + 2µh′′
zz̄ = 0

∂2hz̄z̄ − 2∂̄∂hzz̄ + ∂̄2hzz + 2h′
zz̄ − 4ρh′′

zz̄ = 0,

(6.19)

where again we have temporarily reinstated µ for later use. From these equations it is

straightforward to verify that h′′
zz̄ satisfies a Bessel-like equation:

4ρ2h
(4)
zz̄ + 8ρh

(3)
zz̄ + (4ρ∂̄∂ − µ2 + 1)h′′

zz̄ = 0, (6.20)
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which has the general solution:

h′′
zz̄ = ρ−1/2Kµ(q

√
ρ)α + ρ−1/2Iµ(q

√
ρ)β, (6.21)

with α and β arbitrary functions of u and v and we defined q =
√

−4∂̄∂. Passing to

momentum space, we have q ≥ 0 and only Kµ is regular as ρ → ∞ and we therefore

set β = 0.

As a sidenote, in real time it is possible that q < 0 and then both solutions have a

power-law divergence as ρ → ∞. A solution that is regular at ρ → ∞ can nevertheless

be constructed from them using an infinite number of these modes [4, 8]; see also [31]

for an explicit example. Alternatively, one can solve the fluctuation equation using global

coordinates. In any case, since we work in Euclidean signature such singular behavior for

the individual modes is absent and there is no need to worry about these issues.

We can integrate (6.21) twice to find an explicit solution for hzz̄ which for general µ

involves an integral of the hypergeometric functions 1F2. Notice also that as µ → ∞ the

linearized Einstein equations become h′′
zz̄ = 0, so the radial dependence of the perturbation

is linear in ρ. This correctly reproduces the linearization of the exact solution of the

non-linear vacuum Einstein equation in three dimension in Fefferman-Graham coordinates

given in [47], which has a Fefferman-Graham expansion that terminates at ρ2.

For the other components, the last two equations in (6.19) may be exploited to

find that:

2∂2h′
z̄z̄ = 4ρh

(3)
zz̄ + 2(1 − µ)h′′

zz̄ + 2∂̄∂h′
zz̄ ,

2∂̄2h′
zz = 4ρh

(3)
zz̄ + 2(1 + µ)h′′

zz̄ + 2∂̄∂h′
zz̄ ,

(6.22)

which allows us to completely solve the system.

6.3.1 Solutions for µ = 1

In contrast to the case for general µ, for µ = 1 one may use the modified Bessel equation:

∂2
x

(√
xK1(

√
x)
)

=
1

4
√

x
K1(

√
x) (6.23)

to integrate (6.21) twice giving:

hzz̄ = Bzz̄∂
2c0 + c1ρ + c2, (6.24)

where ci are integration constants which are arbitrary functions of z̄ and z and we defined

Bzz̄ ≡ −2
√

ρ

q
K1(q

√
ρ). (6.25)

Notice that it is convenient to express h′′
zz̄ as:

h′′
zz̄ = −1

ρ
Bzz̄∂̄∂3c0. (6.26)
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Integrating (6.22) then results in:

hz̄z̄ = −Bzz̄∂∂̄c0 − 2B′
zz̄c0 +

∂̄

∂
c1ρ + c3,

hzz = −Bzz̄
∂3

∂̄
c0 +

∂

∂̄
c1ρ + c4,

(6.27)

and the last equation in (6.19) gives the constraint:

2c1 + ∂̄2c4 + ∂2c3 − 2∂̄∂c2 = 0, (6.28)

i.e. c1 is not an independent integration constant, but is determined in terms of the other

integration constants.

Near the boundary ρ → 0 we have the following expansion:

Bzz̄ = − 2

q2
− ρ

2
(2γ − 1) − ρ log

(

q
√

ρ

2

)

− q2ρ2

8
log

(

q
√

ρ

2

)

+ . . . , (6.29)

with γ the Euler-Mascheroni constant. Substitution in (6.27) then yields the expansions

for the components:

hzz̄ = h(0)zz̄ −
1

2
ρ log(ρ)∂2b(0)z̄z̄ + ρh(2)zz̄ + . . . , (6.30)

hz̄z̄ = b(0)z̄z̄ log(ρ) + h(0)z̄z̄ −
1

2
ρ log(ρ)∂̄∂b(0)z̄z̄ + ρ

[

∂̄

∂
h(2)zz̄ +

4γ − 3

2
∂̄∂b(0)z̄z̄

]

+ . . . ,

hzz = h(0)zz +
1

2
ρ log(ρ)

∂3

∂̄
b(0)z̄z̄ + ρ

[(

2γ − 1 + 2 log

(

q

2

))

∂3

∂̄
b(0)z̄z̄ +

∂

∂̄
h(2)zz̄

]

+ . . . ,

where the boundary sources h(0)ij and b(0)z̄z̄ are given by the following combinations of the

integration constants ci:

h(0)zz̄ = c2 −
2

q2
∂2c0 h(0)zz = c4 −

1

2

∂2

∂̄2
c0

h(0)z̄z̄ = c3 −
1

2
c0 + 2γc0 + 2 log

(

q

2

)

c0 b(0)z̄z̄ = c0. (6.31)

The normalizable mode is the combination:

h(2)zz̄ = c1 −
2γ − 1

2
∂2c0 − log

(

q

2

)

∂2c0, (6.32)

which using (6.28) is determined by the boundary sources via:

h(2)zz̄ = −1

2
∂2h(0)z̄ z̄ −

1

2
∂̄2h(0)zz + ∂̄∂h(0)zz̄ −

1

2
∂2b(0)z̄z̄. (6.33)

This is indeed the linearized form of (4.13) and (4.10) combined. Notice also that the

radial expansion (6.30) indeed shows the same asymptotic behavior as (4.4) in section 4.2.
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6.4 Two-point functions

Substituting the solutions that we found above into the holographic one point func-

tions (6.17), we find that:

〈tzz〉 =
−1

4GN

(

(4γ − 1)
∂3

∂̄
b(0)z̄z̄ + 4 log

(

q

2

)

∂3

∂̄
b(0)z̄z̄ + 2

∂

∂̄
h(2)zz̄

)

,

〈Tzz̄〉 = local,

〈Tzz〉 = − 1

4GN

(

∂3

∂̄
b(0)zz + local

)

,

〈Tz̄z̄〉 =
1

2GN

(

∂̄

∂
h(2)zz̄ + local

)

,

(6.34)

where the local pieces correspond to finite contact terms.

We now turn to the position space expressions for the two-point functions. These are

obtained via the following functional differentiations:

〈Tij . . .〉 = i
4π

√−g(0)

δ

δgij
(0)

〈. . .〉, 〈tij . . .〉 = i
4π

√−g(0)

δ

δbij
(0)

〈. . .〉, (6.35)

where the prefactors are explained in appendix B. Notice that in complex coordinates

ds2 = dzdz̄ so
√−g(0) = 1/2 whilst in our case gij = ηij − hij and therefore

δ

δgij
= − δ

δhij
= −ηikηjl

δ

δhkl
(6.36)

which in complex coordinates becomes:

δ

δgzz
(0)

= −1

4

δ

δhz̄z̄
,

δ

δgz̄z̄
(0)

= −1

4

δ

δhzz
. (6.37)

Functionally differentiating the one point functions thus results in:

〈tzz(z, z̄)tzz(0)〉 = −2πi

GN

[(

γ − 1

4

)

+ log

(

q

2

)]

∂3

∂̄
δ2(z, z̄)

〈tzz(z, z̄)Tzz(0)〉 = − iπ

2GN

∂3

∂̄
δ2(z, z̄)

〈Tz̄z̄(z, z̄)Tz̄z̄(0)〉 =
iπ

2GN

∂̄3

∂
δ2(z, z̄)

(6.38)

whilst 〈tzzTz̄z̄〉 = 〈Tz̄z̄Tzz〉 = 〈TzzTzz〉 = 0 up to contact terms.

These expressions can be evaluated using the following set of identities. First no-

tice that:

− 2iδ2(z, z̄) = δ(x)δ(τ), 4∂∂̄ = ∂2
τ + ∂2

x. (6.39)

The former of these is obtained by requesting
∫

d2zδ2(z, z̄) = 1 and 1
2

∫

d2z(. . .) =

−i
∫

d2x(. . .). We also need the following integral, which can be directly computed us-

ing the properties of the Bessel function J0(x):

1

4π2

∫

dωdkeiωτ+ikx 1

(ω2 + k2)α/2
=

1

π
2−α Γ(1 − α/2)

Γ(α/2)
(τ2 + x2)−1+(α/2). (6.40)
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Taking the limit α = 2 on both sides gives the identity:

1

∂∂̄
δ2(z, z̄) =

2i

∂2
τ + ∂2

x

δ2(x, y) =
i

2π
log(m2(τ2 + x2)) =

i

2π
log(m2|z|2) (6.41)

where m is a scale. By differentiating both sides in (6.40) with respect to α we also find:

log(q)
1

∂∂̄
δ2(z, z̄) = log(q)

2i

∂2
τ + ∂2

x

δ2(x, y) = − i

8π
log2(m2(τ2 + x2)) = − i

8π
log2(m2|z|2).

(6.42)

Using these expressions the two-point functions become:

〈tzz(z, z̄)tzz(0)〉 =
1

4GN
∂4[Bm log(m2|z|2) − log2(m2|z|2)]

=
1

2GN

−3Bm − 11 + 6 log(m2|z|2)
z4

,

〈tzz(z, z̄)Tzz(0)〉 =
1

4GN
∂4 log(m2|z|2) =

−3/(2GN )

z4
,

〈Tz̄z̄(z, z̄)Tz̄z̄(0)〉 =
3/(2GN )

z̄4
,

(6.43)

where Bm is a scale-dependent constant that can be changed by rescaling m in the first

line. In fact, the entire non-logarithmic piece in the second line can also be removed from

the correlation function by redefining t → t − (3Bm + 11)Tzz/6. This transformation is

familiar from logarithmic CFT as we review in appendix D.

6.4.1 Comparison to logarithmic CFT

The expressions above agree with general expectations from a logarithmic CFT, see ap-

pendix D for an introduction. The central charges can be computed as follows. From the

two-point functions of Tz̄z̄ and Tzz, which should be of the form:

〈TzzTzz〉 =
cL

2z4
, 〈Tz̄z̄Tz̄z̄〉 =

cR

2z̄4
, (6.44)

we find that

cL = 0, cR =
3

GN
, (6.45)

which agrees with [3]. As discussed in appendix D two point functions of a logarithmic

pair of operators (T, t) in a LCFT have the structure:

〈T (z)T (0)〉 = 0; 〈T (z)t(0, 0)〉 =
b

2z4
; (6.46)

〈t(z, z̄)t(0, 0)〉 =
−b log(m2|z|2)

z4
.

Note that by rescaling the operator t the coefficients of the non-zero two point functions

can be changed; there is however a distinguished normalization of the operator in which the

two point functions take this form, and the coefficient b is sometimes referred to as the new

anomaly, see [48]. Comparing these expressions with (6.43) we see that our holographic
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two point functions indeed have the structure expected from a LCFT and the coefficient

b is:

b = − 3

GN
. (6.47)

This value will be confirmed below in the analysis for general µ.

7 Linearized analysis for general µ

In this section we repeat the linearized analysis of section 6 for general µ around the

Poincaré background. We define:

λ =
1

2
(µ − 1), µ = 2λ + 1, (7.1)

and we work around λ = 0.

7.1 Asymptotic analysis

The linearized equations of motion give the most general asymptotic form of the solution:

hij = h(−2λ)ijρ
−λ + h(0)ij + h(2)ijρ + h(2−2λ)ijρ

1−λ + h(2+2λ)ijρ
λ+1 + . . . , (7.2)

with the conditions:

tr(h(−2λ)) = 0 P k
i h(−2λ)kj = 0 tr(h(2)) = −1

2
R̃[h(0)]

tr(h(2−2λ)) =
−R̃[h(−2λ)]

2(1 − λ)(2λ + 1)
tr(h(2λ+2)) = 0 P̄ k

i h(2λ+2)kj = 0 (7.3)

h(2−2λ)ij +
2λ − 1

2λ + 1
ǫ k
i h(2−2λ)kj =

1

2
ηijtr(h(2−2λ)) +

ǫ k
i (∂k∂lh(−2λ)lj + ∂j∂

lh(−2λ)lk)

4(1 − λ)(2λ + 1)
.

Notice that for integer values of µ we see from the explicit solutions below that a logarithmic

mode appears. In what follows we will consider only the case 0 < |µ| < 2 so |λ| < 1
2 , with

|µ| = 1 the special point discussed above, so such logarithmic modes are not required. It

would be straightforward to generalize the linearized analysis to other values of λ, whilst

for λ < 0 the corresponding dual operator is relevant and thus there is no obstruction to

carrying out a full non-linear analysis of the system.

Substituting the expansions into the on-shell action, the second term in the expansion

of the on-shell action I2 was defined for µ = 1 in (6.8) and now becomes:

I2,λ =
1

32πGN

∫

d2x

(

h′
ij − ηijtr(h

′) − 2ρ
1

2λ + 1
ǫ k
i h′′

kj −
1

(2λ + 1)
ǫ k
i h′

kj

)

hij . (7.4)

Substituting (7.2), we find that this action is again divergent if h(−2λ) is nonzero and if

λ > 0, with a leading piece of the form:

I2,λ =
1

32πGNµ

∫

d2x

(

1

2
tr(h(0))R̃[h(−2λ)]−2λh(2)ijh

ij
(−2λ)−

1

2
hk

(0)i∂
i∂jh(−2λ)jk

)

ρ−λ + . . .

(7.5)
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This term is cancelled precisely by adding I2,ct/(2λ + 1), where I2,ct is the counterterm

action for µ = 1 defined in (6.12). For λ < 0 there is no divergence but the counterterm

action is then finite as well and we will continue to include it.

The variation of the total action I2,λ,tot = I2,λ + I2,ct/(2λ + 1) is similar to (6.14):

δI2,λ,tot

δhij
=

1

16πGN

(

h′
ij − ηijtr(h

′) +
1

2λ + 1

[

− 2ρǫ k
i h′′

kj − ǫ k
i h′

kj +
1

2
Ãij [h]

+
1

4
∂k∂khij −

1

4
∂i∂

khkj

])

, (7.6)

δI2,λ,tot

δh′ij =
1

16πGN (2λ + 1)
ρ(δk

i + ǫ k
i )h′

kj .

To obtain the one-point functions we follow the same reasoning as in section 4.4. We have

two independent variables, h(0)ij and h(−2λ)ij , for which we define the corresponding CFT

operators Tij and Xij , with Tij again the energy-momentum tensor of the theory. To find

their one-point functions, we first observe that:

hij
(0)

= lim
ρ→0

(

hij +
1

λ
h′ijρ

)

hij
(−2λ)

= lim
ρ→0

(

− 1

λ
h′ijρλ+1

)

(7.7)

where we note that indices are raised with ηij . From these expressions we find:

〈Xij〉 ≡
−4π
√−g(0)

δI2,λ,tot

δhij
(−2λ)

= lim
ρ→0

(

λρ−1−λ 4π√−g

δI2,λ,tot

δh′ij − ρ−λ 4π√−g

δI2,λ,tot

δhij

)

L

〈Tij〉 ≡
4π

√−g(0)

δI2,λ,tot

δhij
(0)

= lim
ρ→0

4π√−g

δI2,λ,tot

δhij
,

(7.8)

where the signs originate from the reasoning in appendix B, plus an extra sign arising

from the fact that gij = ηij − hij . We inserted a factor of 4π in the definition of Xij for

later convenience. After substitution of (7.2) these expressions lead to the following finite

one-point functions:

〈Tij〉 =
1

4GN

{(

δk
i − 1

2λ + 1
ǫ k
i

)

h(2)kj − ηijtr(h(2))

+
1

2(2λ + 1)
P̄ k

i

(

∂l∂lh(0)kj − ∂j∂
lh(0)kl

)}

,

〈Xij〉 =
λ(1 + λ)

2GN (2λ + 1)
(h(2+2λ)ij)L. (7.9)

Symmetrization in i and j is again understood in these expressions.

7.2 Two-point functions

Just as in section 6.3, we can use the equations (6.21) and (6.22) (with the Kµ choice for

the Bessel function) to find exact solutions to the linearized equations of motion. Asymp-
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totically, they behave as follows:

hzz̄ = h(0)zz̄ + ρh(2)zz̄ +
1

2(λ − 1)(2λ + 1)
∂2h(−2λ)z̄ z̄ρ

1−λ + . . . ,

hz̄z̄ = h(−2λ)z̄z̄ρ
−λ + h(0)z̄ z̄ +

1

2(λ − 1)
∂̄∂h(−2λ)z̄ z̄ρ

1−λ +
∂̄

∂
h(2)zz̄ρ + . . . ,

hzz = h(0)zz +
∂

∂̄
h(2)zz̄ρ +

2−4λ+2λ

(λ + 1)

Γ(−2λ − 1)

Γ(2λ + 1)
q4λ−2∂4h(−2λ)z̄z̄ρ

λ+1 + . . . ,

(7.10)

with same trace condition as was given for µ = 1 in (6.33),

h(2)zz̄ = −1

2
∂2h(0)z̄z̄ −

1

2
∂̄2h(0)zz + ∂̄∂h(0)zz̄ , (7.11)

and integration constants h(0)z̄z̄, h(0)zz , h(0)zz̄ and h(−2λ)z̄z̄; these are as anticipated the

sources for the dual operators.

We can substitute this solution in (7.9) to find the one-point functions:

〈Xzz〉 =
2−4λ+1λ2

GN

Γ(−2λ − 1)

Γ(2λ + 2)
q4λ−2∂4h(−2λ)z̄z̄

〈Tz̄z̄〉 =
2λ + 2

4GN (2λ + 1)

∂̄

∂
h(2)zz̄ + local

〈Tzz̄〉 = local

〈Tzz〉 =
2λ

4GN (2λ + 1)

∂

∂̄
h(2)zz̄ .

(7.12)

From these expressions we obtain the following nonvanishing two-point functions:

〈Tz̄z̄(z, z̄)Tz̄z̄(0)〉 =
iπ

2GN

λ + 1

2λ + 1

∂̄3

∂
δ2(z, z̄) =

3

2GN

λ + 1

2λ + 1

1

z̄4
,

〈Tzz(z, z̄)Tzz(0)〉 =
iπ

2GN

λ

2λ + 1

∂3

∂̄
δ2(z, z̄) =

3

2GN

λ

2λ + 1

1

z4
,

〈Xzz(z, z̄)Xzz(0)〉 = i
4π

√−g(0)

δ

δhzz
(−2λ)(z, z̄)

〈X(0)〉 = 2πi
δ

δh(−2λ)z̄ z̄(z, z̄)
〈Xzz(0)〉

=
iπ2−4λ+2λ2

GN

Γ(−2λ − 1)

Γ(2λ + 2)
q4λ−2∂4δ2(z, z̄)

=
−1

2GN

λ(λ + 1)(2λ + 3)

2λ + 1

1

z2λ+4z̄2λ
,

(7.13)

where the computation of the two-point function of the energy-momentum tensor is com-

pletely analogous to the previous section and we used the identity (6.40). Comparing now

with (6.44) we read off that:

(cL, cR) =
3

GN

(

λ

2λ + 1
,

λ + 1

2λ + 1

)

=
3

2GN

(

1 − 1

µ
, 1 +

1

µ

)

(7.14)

and from the last line in (7.13) we also find that X has weights (hL, hR) = (2 + λ, λ) =
1
2 (µ + 3, µ − 1). Both expressions agree with [3].
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The limit λ → 0 and logarithmic CFT. As λ → 0, we find that the 〈TT 〉-correlators
return to the values given in section 6.4. On the other hand, the 〈XX〉-correlator vanishes,

but we also find that the definitions for Xzz and Tzz as given in (7.8) coincide in this limit

(up to a sign). To remedy this we can introduce a new field,

tzz = − 1

λ
Xzz −

1

λ
Tzz, (7.15)

after which we can take λ → 0 in (7.8) and obtain (4.36) (up to a sign from the fact that

gij = ηij − hij). We obtain for the nonzero two-point functions:

〈tzz(z, z̄)Tzz(0)〉 = − 3

2GN

1

2λ + 1

1

z4
=

−3/(2GN )

z4
+ . . .

〈tzz(z, z̄)tzz(0)〉 =
Bm + 3/(GN ) log(m2|z|2)

z4
+ . . .

(7.16)

where the dots represent terms that vanish as λ → 0. These are exactly the same correlators

as in section 6.4. The term Bm can again be removed by a redefinition of tzz and from (7.16)

we again see that b = −3/GN .

In appendix D we discuss the degeneration of a CFT to a logarithmic CFT as cL → 0

following Kogan and Nichols [49]. Their cL → 0 limit is precisely the same limit as taken

here, i.e. the logarithmic partner of the stress energy tensor originates from another primary

operator whose dimension approaches (2, 0) in the cL → 0 limit. Given such a limiting

procedure, the anomaly b is obtained by inverting the relation between λ (which is the

right-moving weight of X) and cL given above and using (D.9) in appendix D. This results

in b = − limcR→0 cL/λ(cL) = −3/GN and thus agrees with (7.16). Note that there are

other distinct approaches to taking a c → 0 limit, see [50] for a review, but it is the

Kogan-Nichols approach which is realized holographically here.

Energy computations. In Lorentzian signature and in global coordinates, the insertions

of the operators Xzz, Tzz or Tz̄z̄ in the infinite past creates the massive, left-moving or right-

moving graviton states discussed in [3]. In [3] the energy of these states was computed in

the bulk and we are now able to give a CFT interpretation of their results.

For the states created by the operators Xzz, Tzz, Tz̄z̄, the equations (70)-(72) in [3] give

energies of the form:

Xzz : EM =
−1

8GN

(

µ − 1

µ

)

(hL + hR)
[

. . .
]

,

Tzz : EL =
−1

4GN

(

− 1 +
1

µ

)

[

. . .
]

,

Tz̄z̄ : ER =
−1

4GN

(

− 1 − 1

µ

)

[

. . .
]

.

(7.17)

The expressions in square brackets are positive, but their exact value depends on the

normalization of the solutions to the linearized equations of motion in [3] and is therefore

arbitrary. We can thus only compare the overall sign of the energies (7.17) with our

results. Notice that we put in an extra factor of the left- plus right-moving weight from
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each operator, which for Tzz and Tz̄z̄ are just factors of 2; in [3] such factors comes from a

time derivative of the bulk modes and we will see similar factors appearing below.

Following the usual CFT logic, we may obtain the energies of a state by computing

three-point functions. For example, for the massive mode we need to compute

〈Xzz|Tzz(z)|Xzz〉, (7.18)

with

|Xzz〉 = Xzz(0, 0)|0〉, 〈Xzz| = lim
z,z̄→∞

〈0|Xzz(z, z̄)z2λ+4z̄2λ. (7.19)

The usual Ward identity:

〈Xzz(z1)Tzz(z)Xzz(z2)〉 =
∑

i∈{1,2}

(

hL

(z − zi)2
+

1

z − zi

∂

∂zi

)

〈Xzz(z1)Xzz(z2)〉 (7.20)

results in:

〈Xzz|Tzz(z)|Xzz〉 =
CXhL

z2
, (7.21)

where CX is the normalization of the 〈XX〉-correlator,

〈Xzz(z, z̄)Xzz(0)〉 =
CX

z4+2λz̄2λ
, (7.22)

CX =
−1

2GN

λ(λ + 1)(2λ + 3)

2λ + 1
=

−1

8GN

(

µ − 1

µ

)

(µ + 2).

Note that the magnitude (but not the sign) of CX can change by changing the normalization

of the operator X. This is the counterpart of the arbitrariness of the quantities in the square

brackets of (7.17) due to the normalization ambiguity of the solutions to the linearized

equations.

By using the Virasoro algebra one may also obtain that:

〈Tzz|Tzz(z)|Tzz〉 = 〈0|L2

∑

m∈Z

Lmz−m−2L−2|0〉 =
cL

z2
, (7.23)

with cL the left-moving central charge defined in (7.14). The computation involving Tz̄z̄ is

completely analogous, and of course the mixed three-point functions involving Tzz and Tz̄z̄

vanish. To transfer these results to the cylinder we use the conformal transformation:

z = exp(iw), (7.24)

whose Schwarzian derivative is 1/2. We then find the following three-point functions on

the cylinder:

〈Xww|Tww(w) + Tw̄w̄(w̄) − cL + cR

24
|Xww〉 = CX(hL + hR)

=
−1

8GN

(

µ − 1

µ

)

(hL + hR)(µ + 2),

〈Tww|Tww(w) + Tw̄w̄(w̄) − cL + cR

24
|Tww〉 = cL =

3

2GN

(

1 − 1

µ

)

,

〈Tw̄w̄|Tww(w) + Tw̄w̄(w̄) − cL + cR

24
|Tw̄w̄〉 = cR =

3

2GN

(

1 +
1

µ

)

.

(7.25)
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Let us now compare these results with [3]. Notice first of all that the zero-point of

energy in that paper is that of global AdS, which is why we explicitly subtracted the

Casimir energy in the above expressions. Comparing now (7.25) with (7.17) we indeed

find the same structure and precisely the same signs. The computations are therefore

in agreement.

Finally, notice that in a CFT one usually divides the expressions in (7.25) by the norm

of the state (e.g. 〈Xzz|Xzz〉) to obtain energies that are precisely equal to the conformal

weights of the operators creating the state. On the other hand, the energies computed

using bulk methods as in [3] are the unnormalized energies of (7.25) and therefore extra

signs may arise if a state has a negative norm. This explains the sign difference between

the conformal weights and the energies found in [3].

8 Conclusions

By implementing the AdS/CFT dictionary for topologically massive gravity, we were able

to provide further evidence for its duality at µ = 1 to a logarithmic conformal field theory.

The expressions for the two-point functions indicate problems with unitarity and positivity

as we find zero-norm states at µ = 1, negative-norm states at µ 6= 1 and negative conformal

weights at µ < 1. It therefore seems problematic to consider the full TMG as a fundamental

theory, but this duality could nonetheless have interesting applications to condensed matter

systems. For example, c = 0 LCFTs arise in the description of critical systems with

quenched disorder and in several other contexts.

One may try to restrict to the right-moving sector of the theory [17], which could yield

a consistent chiral theory. In order for this sector to decouple a necessary requirement is

that the 〈tT̄ T̄ 〉 three-point function should vanish. This was shown to be the case in the

discussion of [49], see their equation (42), and their analysis can be adapted to the case

of interest, namely when only cL → 0, leading to the same result. This suggests that one

can indeed truncate to the right-moving sector, but it would be interesting to extend our

analysis and verify the vanishing of this 3-point function by a bulk computation.

One may also perform a holographic analysis for the ‘warped’ solutions found in [39].

The asymptotics in these cases are discussed in appendix E and indicate qualitatively

different UV behavior for the dual field theory; it would be interesting to extend the

holographic setup to this class of solutions. A similar procedure could also be followed to

analyze the ‘new massive gravity’ of [51] around AdS solutions. This would allow us to

find out more about the possible dual CFTs.

Acknowledgments

This work is part of the research program of the ’Stichting voor Fundamenteel Onderzoek

der Materie (FOM)’, which is financially supported by the ‘Nederlandse Organisatie voor

Wetenschappelijk Onderzoek (NWO)’. The authors acknowledge support from NWO, KS

via a Vici grant, MMT via the Vidi grant “Holography, duality and time dependence in

string theory” and BvR via an NWO Spinoza grant. KS and MMT would like to thank

– 33 –



J
H
E
P
0
9
(
2
0
0
9
)
0
4
5

GGI in Florence and the Aspen Center of Physics for hospitality during the final stages of

this work.

A Derivation of the equations of motion

In this appendix we derive the equations of motion in Fefferman-Graham coordinates,

where the metric has the form

ds2 =
dρ2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj. (A.1)

In this section we raise indices using gij and the covariant derivative ∇i and the two-

dimensional antisymmetric tensor ǫij are also defined using gij . In the metric (A.1) the

nonzero connection coefficients are:

Γρ
ρρ = −1

ρ
Γi

ρj = − 1

2ρ
gi
j +

1

2
(g−1g′)ij (A.2)

Γρ
ij = 2gij − 2ρg′ij Γi

jk = Γi
jk(g) , (A.3)

where the index ρ now denotes the coordinate ρ and a prime denotes radial derivative. The

curvature tensor becomes:

Rρij
k(G) =

1

2
gkl
(

∇lg
′
ij −∇jg

′
il

)

,

Riρj
ρ(G) = −2ρ

(

g′′ij −
1

2
(g′g−1g′)ij

)

− 1

ρ
gij , (A.4)

Rijk
l(G) = Rijk

l(g) +

(

1

ρ
gl
igjk + gl

jg
′
ik + gmlgikg

′
mj + ρglmg′img′jk − (i ↔ j)

)

,

The Einstein part of the equation of motion, Rµν + 2Gµν , is given by:

Rρρ(G) + 2Gρρ = −1

2
tr(g−1g′′) +

1

4
tr(g−1g′g−1g′),

Riρ(G) + 2Giρ =
1

2
∇jg′ji −

1

2
∇itr(g

−1g′),

Rij(G) + 2Gij =
1

2
R(g)gij + gijtr(g

−1g′) + ρ
[

− 2g′′ij − g′ijtr(g
−1g′) + 2(g′g−1g′)ij

]

,

(A.5)

where we used that in two dimensions

Rijkl =
1

2
R[gikglj − (l ↔ k)], Rik =

1

2
Rgik . (A.6)

The trace equation R = −6 now becomes:

− 4ρtr(g−1g′′) + 3ρtr(g−1g′g−1g′) − ρ[tr(g−1g′)]2 + R(g) + 2tr(g−1g′) = 0. (A.7)
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We use ǫρij = 2ρ2ǫij to relate the three- and two-dimensional ǫ-tensors. For the Cotton

tensor Cµν defined in (2.5) we then find:

Cρρ =
1

4
ǫij
(

∇i∇kg′kj + 2ρ(g′′g−1g′)ji
)

,

Cρi =
1

2
ǫjk

(

1

2
gik∇jR − 2ρ∇jg

′′
ik − ρtr(g−1g′)∇jg

′
ik + 2ρ∇j(g

′g−1g′)ik

− (gij − ρg′ij)∇lg′lk

)

,

Ciρ = ǫ k
i

(

− ρ∇lg′′lk − 1

4
ρ∇ktr(g

−1g′g−1g′) +
1

2
ρ(g−1g′)jk∇lg′lj + ρ(g−1g′)jl∇lg′jk

+
1

2
∇ktr(g

−1g′) − 1

2
∇jg′jk

)

,

Cij = 2ρǫ k
i

(

gjk

[

− 1

2
R′ − 1

4ρ
R − 1

2ρ
tr(g−1g′) +

1

2
tr(g−1g′g−1g′)

]

− 1

4
Rg′jk

+
1

2
∇k∇mg′mj −

1

2
∇k∇j [tr(g

−1g′)] + 2ρg′′′jk + g′′kj[3 + ρtr(g−1g′)]

+ g′kj[tr(g
−1g′) + ρ(tr(g−1g′))′ − ρtr(g−1g′′) +

1

2
ρtr(g−1g′g−1g′)]

+ (g′g−1g′)kj

[

− 3 − 1

2
ρtr(g−1g′)

]

− 3ρ(g′′g−1g′)kj − 2ρ(g′g−1g′′)kj

+ 3ρ(g′g−1g′g−1g′)kj

)

.

(A.8)

With these expressions we indeed find that Cµ
µ = 0, Cρi = Ciρ and Cij = Cji. To verify

this we used the Cayley-Hamilton identity,

1

2
gjl

(

[tr(g−1g′)]2 − tr(g−1g′g−1g′)
)

+ (g′g−1g′)jl − g′jltr(g
−1g′) = 0 , (A.9)

the radial derivative of the two-dimensional Ricci tensor,

R′
ik =

1

2

(

∇l∇ig
′
kl + ∇l∇kg

′
il −∇a∇ag

′
ik −∇i∇ktr(g

−1g′)
)

, (A.10)

as well as the identity for the two-dimensional ǫ-symbol,

ǫijǫkl = −gikgjl + gilgjk . (A.11)

As Cij is symmetric, we can also rewrite it as 1
2(Cij +Cji) which allows us to drop the term

proportional to ǫ k
i gkj . This, the expression for R given in (A.7), and further application

of the Cayley-Hamilton theorem eventually give:

Cij = ρǫ k
i

(

1

2
∇k∇mg′mj −

1

2
∇k∇j[tr(g

−1g′)] + 2ρg′′′jk + g′′kj

[

3 + ρtr(g−1g′)
]

+ g′kj

[

− 3

2
tr(g−1g′) +

3

4
ρ[tr(g−1g′)]2 − ρtr(g−1g′′) +

7

4
ρtr(g−1g′g−1g′)

]

− 3ρ(g′′g−1g′)kj − 2ρ(g′g−1g′′)kj

)

+ i ↔ j .

(A.12)
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Combining the above expressions (A.5) and (A.8) leads to the full equations of motion

which are given by:

−1

2
tr(g−1g′′) +

1

4
tr(g−1g′g−1g′) +

1

4µ
ǫij
(

∇i∇kg′kj + 2ρ(g′′g−1g′)ji
)

= 0,

1

2
∇jg′ji −

1

2
∇itr(g

−1g′) +
1

2µ
ǫjk

(

1

2
gik∇jR + gik∇lg′lj

+ρ

[

− 2∇jg
′′
ik − tr(g−1g′)∇jg

′
ik + 2∇j(g

′g−1g′)ik + g′ij∇lg′lk

])

= 0,

(A.13)
(

tr(g−1g′′)− 3

4
tr(g−1g′g−1g′)+

1

4
[tr(g−1g′)]2

)

gij−g′′ij−
1

2
g′ijtr(g

−1g′)+(g′g−1g′)ij

+
1

µ
ǫ k
i

(

1

2
∇k∇mg′mj −

1

2
∇k∇j[tr(g

−1g′)] + 2ρg′′′jk + g′′kj

[

3 + ρtr(g−1g′)
]

+g′kj

[

− 3

2
tr(g−1g′) +

3

4
ρ[tr(g−1g′)]2 − ρtr(g−1g′′) +

7

4
ρtr(g−1g′g−1g′)

]

−3ρ(g′′g−1g′)kj − 2ρ(g′g−1g′′)kj

)

+ i ↔ j = 0,

where we emphasize that the symmetrization in the last equation concerns all the terms.

We can use the (ρρ) equation of motion to simplify the (ij) equation of motion to:

(

1

2
tr(g−1g′′)− 1

2
tr(g−1g′g−1g′)+

1

4
[tr(g−1g′)]2

)

gij−g′′ij−
1

2
g′ijtr(g

−1g′)+(g′g−1g′)ij

+
1

µ
ǫ k
i

(

1

4
∇k∇mg′mj +

1

4
∇j∇mg′mk − 1

2
∇k∇j[tr(g

−1g′)] + 2ρg′′′jk + g′′kj

[

3 + ρtr(g−1g′)
]

+g′kj

[

− 3

2
tr(g−1g′) +

3

4
ρ[tr(g−1g′)]2 − ρtr(g−1g′′) +

7

4
ρtr(g−1g′g−1g′)

]

−5

2
ρ(g′′g−1g′)kj −

5

2
ρ(g′g−1g′′)kj

)

+ i ↔ j = 0.

(A.14)

If we use the first radial derivative of (A.9) we can simplify this further to:

(

1

2
tr(g−1g′′) − 1

4
[tr(g−1g′)]2

)

gij − g′′ij +
1

2
g′ijtr(g

−1g′) (A.15)

+
1

µ
ǫ k
i

(

1

4
∇k∇mg′mj +

1

4
∇j∇mg′mk − 1

2
∇k∇j[tr(g

−1g′)] + 2ρg′′′jk + g′′kj

[

3 − 3

2
ρtr(g−1g′)

]

+ g′kj

[

− 3

2
tr(g−1g′) +

3

4
ρ[tr(g−1g′)]2 − 7

2
ρtr(g−1g′′) +

7

4
ρtr(g−1g′g−1g′)

])

+ i ↔ j = 0.

We can use the equation of motion to rewrite the Riemann tensor as:

Rαβγδ[G] = GαδGβγ − GαγGβδ −
([

1

µ
GαγCβδ − (α ↔ β)

]

− (γ ↔ δ)

)

, (A.16)
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Using then (A.4) for the Riemann tensor in Fefferman-Graham coordinates we obtain:

−2g′′ij + (g′g−1g′)ij +
4

µ
gijCρρ +

1

µρ
Cij = 0,

1

2

(

∇kg
′
ij −∇jg

′
ik

)

=
1

µ
(gijCρk − gikCρj),

1

2

(

gikgjl−gilgjk

)(

− 2tr(g−1g′)+ρ[tr(g−1g′)]2−ρtr(g−1g′g−1g′)
)

+
(

gjlg
′
ik + gikg

′
jl + ρg′ilg

′
jk − (i ↔ j)

)

= 0.

(A.17)

Taking the trace gikRijkl of the last equation results again in the Cayley-Hamilton iden-

tity (A.9). This is also the equation that one obtains from the first equation by eliminating

Cij and Cρρ using the equations of motion. On the other hand, the second of these equa-

tions can alternatively be written as:

(gkj − µǫkj)∇kg
′
ij −∇i

(

tr(g−1g′) +
1

2
ρtr(g−1g′g−1g′) − ρ[tr(g−1g′)]2

)

+ 2ρ∇n
(

g′′in − tr(g−1g′)g′in
)

+ ρ(g−1g′)ki ∇lg′kl = 0 .

(A.18)

B Wick rotation

Given a Lorentzian theory, the most straightforward way to find the corresponding action

in Euclidean signature is to use a complex diffeomorphism:

t = −iτ. (B.1)

After this diffeomorphism (or a similar one using a different coordinate system) the metric

generally becomes positive definite and one has to be careful about the definition of the

square root in the metric determinant. The signs work out correctly if we define
√
−1 =

−i [31]. As in any coordinate system, the antisymmetric tensor is still defined such that√
−Gǫ012 = 1 with x0 now the τ -direction. Because of the volume element the ǫ-tensor

is now complex and to comply with standard notation we make this explicit by writing

−iǫλµν = ǫ̂λµν , where ǫ̂λµν is the standard antisymmetric tensor in Euclidean coordinates

which is defined such that
√

Gǫ̂012 = 1.

As for the action of the theory, we find that the diffeomorphism results in iSL → −SE

with SE the standard Euclidean action. In our case, (2.1) becomes:

iSL = − 1

16πGN

∫

d3x
√

G(−R + 2Λ)

+
i

32πGNµ

∫

d3x
√

Gǫ̂λµν

(

Γρ
λσ∂µΓσ

ρν +
2

3
Γρ

λσΓσ
µτΓ

τ
νρ

)

.

(B.2)

Notice that the implicit metric determinant present in the ǫ-symbol cancels the one in

the volume element and there is no sign change for the Chern-Simons term. From this
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action, we see that a convenient way to determine the Euclidean equations of motion is to

replace everywhere

ǫλµν → iǫ̂λµν , ǫij → iǫ̂ij . (B.3)

With these replacements the equations of motion become complex, and so do the linearized

solutions we find in the main text, but this is not a problem, see [31] for a more extended

discussion of this point.

When using component equations, the conversion between Euclidean and Lorentzian

signature is most easily done by introducing lightcone coordinates on the Lorentzian side:

u = x + t, v = x − t. (B.4)

In these coordinates the metric becomes:

ds2 = dudv (B.5)

and we fix the sign of the ǫ-tensor such that ǫuv = −1
2 . The passage to Euclidean signature

is then implemented by defining complex coordinates:

z = x + iτ, z̄ = x − iτ, (B.6)

after which the metric ds2 = dτ2 + dx2 becomes:

ds2 = dzdz̄. (B.7)

The metric determinant in complex coordinates becomes negative again and therefore ǫ̂ij

is complex and ǫij is real. We deduce that the component equations in Euclidean signature

can be obtained by the simple replacement

v → z, u → z̄, (B.8)

in the Lorentzian equations of motion, without any modification of the ǫ-tensor.

Incidentally, notice that the operators:

P k
i =

1

2
(δk

i + ǫ k
i ), P̄ k

i =
1

2
(δk

i − ǫ k
i ), (B.9)

take the following form in lightcone coordinates:

(

P u
u P v

u

P u
v P v

v

)

=

(

0 0

0 1

) (

P̄ u
u P̄ v

u

P̄ u
v P̄ v

v

)

=

(

1 0

0 0

)

(B.10)

so that, if for example P k
i b(0)kj = 0 and bi

(0)i = 0 then only the b(0)uu component can be

nonzero. From the above reasoning it follows that these operators take the same form in

complex coordinates and therefore only b(0)z̄z̄ can be nonzero.
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Signs in correlation functions. Our conventions are such that on a Euclidean back-

ground metric gij the energy-momentum tensor is defined as:

TE,ij =
4π√

g

δSE

δgij
. (B.11)

Notice that we functionally differentiate with respect to the inverse metric. When we

analytically continue back to Lorentzian signature, the definition on the right-hand side

changes. Namely, from the above discussion it follows that SE = −iSL and
√

g = i
√−g,

so in Lorentzian signature

TL,ij = − 4π√−g

δSL

δgij
. (B.12)

In terms of the generating functional of connected correlation functions, W = log(Z), we

find that:

TE,ij = − 4π√
g

δWE

δgij
, TL,ij = i

4π√−g

δWL

δgij
. (B.13)

These expressions lead to the following identity that we use in the main text:

〈Tij . . .〉g = i
4π√−g

δ

δgij
〈. . .〉g (B.14)

where 〈. . .〉g is an arbitrary correlator in the background metric gij . Notice that this

expression holds irrespective of the signature of the metric, provided we define the square

root as above.

Now for general correlation functions of an operator O, we customarily define the

source-operator coupling in Euclidean signature as:

−
∫

d2x
√−g φE · OE , (B.15)

with φE the Euclidean source and the dot denoting various possible index contractions.

Using once more the above conventions, we find that in Lorentzian signature the cou-

pling becomes:

− i

∫

d2x
√−g φL · OL, (B.16)

and therefore

〈OE〉 = − 1√
g

δWE

δφE
, 〈OL〉 = i

1√−g

δWL

δφL
. (B.17)

This results in the general expression in terms of correlation functions:

〈O . . .〉φ = i
1√−g

δ

δφ
〈. . .〉φ. (B.18)

In the context of AdS/CFT, WE ∼ −SE and WL ∼ iSL with SE and SL the Euclidean

and the Lorentzian on-shell bulk action, respectively. This leads to:

〈OE〉 =
1√
g

δSE

δφE
, 〈OL〉 = − 1√−g

δSL

δφL
. (B.19)
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On the other hand, for the energy-momentum tensor one may directly use the formu-

las (B.11) and (B.12), where now SL and SE are the on-shell bulk action. It was shown

in [31] that these expressions, with in particular the above choice of signs, lead to con-

tinuous holographic expressions for the one-point functions. For example, in the case of

three-dimensional Einstein gravity one finds:

〈Tij〉 =
1

4GN

(

g(2)ij +
1

2
g(0)ijR[g(0)]

)

, (B.20)

independently of the metric signature. In this expression g(0)ij and g(2)ij the leading and

subleading terms in the Fefferman-Graham expansion (4.4). Similarly, for a scalar operator

O dual to a bulk scalar field Φ one finds that:

〈O〉 = −(2∆ − d)φ(2∆−d) (B.21)

with φ(2∆−d) the coefficient of order z∆ in the radial expansion (3.9). Again, with the above

conventions the formula (B.21) holds both in Lorentzian and in Euclidean signature [31].

C Linearized equations of motion in global coordinates

In this appendix we will present the linearized equations in global coordinates. The usual

metric

ds2 = − cosh2(r)dt2 + sinh2(r)dφ2 + dr2 (C.1)

can be put in the Fefferman-Graham form (4.1) by defining

ρ = 4e−2r, (C.2)

after which we obtain:

ds2 = −1

ρ

(

1 +
1

2
ρ +

1

16
ρ2

)

dt2 +
1

ρ

(

1 − 1

2
ρ +

1

16
ρ2

)

dφ2 +
dρ2

4ρ2
. (C.3)

These coordinates cover all of AdS and are thus global coordinates. Notice that ∂kgij = 0

and therefore Γk
ij [g] = 0 (which of course does not imply that δΓk

ij vanishes in the linearized

equations). We also find that:

(g′g−1g′)ij = 2g′′ij ; g′′ij −
1

2
tr(g−1g′)g′ij = f(ρ)gij ; tr(g−1g′) = −2ρf(ρ), (C.4)

with

f(ρ) =
2

16 − ρ2
, (C.5)

which we use to simplify the formulas below. In the expressions below traces are implicitly

taken with the aid of g−1, that is we write tr(g′) where before we wrote tr(g−1g′).
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The linearized (ij) equation of motion (A.15) becomes:

−h′′
ij−ρf(ρ)h′

ij +f(ρ)hij +gij

[

1

2
tr(h′′)− 1

2
tr(hg−1g′′)+ρf(ρ)(tr(h′)−tr(g′g−1h))

]

+
1

2
g′ij

[

tr(h′)−tr(g′g−1h)

]

+
1

µ
ǫ k
i

[

1

4
∂k∂

lh′
lj−

1

4
(g−1g′)cj [∂k∂

lhlc−
1

2
∂k∂ctr(h)]+(j ↔ k)

]

+
1

µ
ǫ k
i

[

1

4
∂k∂jtr(g

′g−1h)− 1

2
∂k∂jtr(h

′)+2ρh′′′
jk + 3(1+ρ2f(ρ))[h′′

jk+ρf(ρ)h′
jk−f(ρ)hkj]

]

+
1

µ
ǫ k
i g′jk

[

− 3

2
(1+ρ2f(ρ))[tr(h′)−tr(hg−1g′)] − 7

2
ρ[tr(h′′)+tr(hg−1g′′)−tr(h′g−1g′)]

]

+ (i ↔ j) = 0,

(C.6)

The linearized version of the (ρi) equation given in (A.18) becomes:

2ρ∂kh′′
ik + (1 + 4ρ2f(ρ))∂kh′

ik + µǫjk∂kh
′
ij −

1

2
µǫjk(g−1g′)lj(∂khil + ∂ihkl − ∂lhik)

−∂i

[

ρtr(h′g−1g′) + [1 + 4ρ2f(ρ)]tr(h′) −
[

1

2
+ 2ρ2f(ρ)

]

tr(g′g−1h) − ρtr(g′′g−1h)

]

+(g−1g′)ki

[

ρ∂lh′
kl − 2ρ∂ktr(h

′) − 3

2
ρ∂ktr(hg−1g′) − [1 + 4ρ2f(ρ)]

[

∂lhkl −
1

2
∂ktr(h)

]]

−2ρ(g−1g′′)ki [2∂
lhkl − ∂ktr(h)] = 0

(C.7)

and the (ρρ) equation results in:

− tr(h′′) + tr(h′g−1g′) − tr(hg−1g′′) +
1

2µ
ǫij

[

∂i∂
mh′

mj − (g−1g′)cj

(

∂i∂
mhmc−

1

2
∂i∂ctr(h)

)

+ 2ρ(h′g−1g′′)ij − 2ρ(g′g−1hg−1g′′)ij + 2ρ(g′g−1h′′)ij

]

= 0. (C.8)

D Some results from LCFT

A logarithmic conformal field theory (LCFT) is a conformal field theory in which logarith-

mic structure arises in the operator product expansion. Such logarithmic structure arises

when there are fields with degenerate scaling dimensions having a Jordan block structure;

in any logarithmic conformal field theory one of these degenerate fields becomes a zero

norm state coupled to a logarithmic partner. In what follows we will be interested in the

simplest situation, in which two operators become degenerate and form a logarithmic pair,

denoted by (C,D). If the operator C becomes a zero norm state, the two point functions

for this logarithmic pair have the structure:

〈C(z, z̄)C(0)〉 = 0; 〈C(z, z̄)D(0, 0)〉 =
bD

2z2hL z̄2hR
; (D.1)

〈D(z, z̄)D(0, 0)〉 =
1

z2hL z̄2hR

[

−bD log m2|z|2 + BD

]

,
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where the conformal weights of both operators are (hL, hR). The constant BD may be

removed by the redefinition D → D − BDC/bD but bD has an invariant meaning and is

a characteristic of the LCFT. One can easily generalize these formulas to the case when

there are n degenerate fields and the Jordan cell is given by an n×n matrix, in which case

the maximal power of the logarithm will be logn |z|.
In the current context we are interested in the case where the conformal field theory

becomes logarithmic as cL → 0 and one of the logarithmic pair is the holomorphic stress

energy tensor. There are several distinct approaches to taking such limits, see [50] for a

review, but the limit relevant for us was discussed in Kogan and Nichols [49]. The following

is a slightly modified version of the discussion in that paper, in which we take the limit

cL → 0 only in the holomorphic sector.

Consider a conformal field theory with central charges (cL, cR) and holomorphic/anti-

holomorphic stress energy tensors (T (z), T̄ (z̄)) respectively, such that

〈T (z)T (0)〉 =
cL

2z4
; 〈T̄ (z̄)T̄ (0)〉 =

cR

2z̄4
. (D.2)

Let V (z, z̄) be a primary field of dimensions (hL, hR), normalized as

〈V (z, z̄)V (0, 0)〉 =
A

z2hL z̄2hR
. (D.3)

If T is the only hL = 2 field present (and T̄ is the only hR = 2 field), then the OPE for

V (z, z̄) is of the form

V (z, z̄)V (0, 0) ∼ A

z2hL z̄2hR

[

1 +
2hL

cL
z2T (0) +

2hR

cR
z̄2T̄ (0) + · · ·

]

(D.4)

where the ellipses denote operators of higher dimension.

Consider now the limit cL → 0 with cR finite: if A remains finite in this limit then the

OPE is not well-defined. Suppose that as cL approaches zero then there is another field X

with dimension (2 + λ, λ) which approaches (2, 0); suppose also that its normalization is

such that this field contributes to the OPE as

V (z, z̄)V (0, 0) ∼ A

z2hL z̄2hR

[

1 +
2hL

cL
z2T (0) +

2hR

cR
z2+λz̄λX(0, 0) + · · ·

]

. (D.5)

Let the two-point function of X be given by:

〈X(z, z̄)X(0, 0)〉 =
B(λ)

z4+2λz̄2λ
, (D.6)

whilst 〈T (z1)X(z2, z̄2)〉 vanishes as they have different dimensions. Now let us define a new

field t(z, z̄) via

t = − 1

λ
T − 1

λ
X. (D.7)

In this way the OPE (D.5) is rendered well-defined as cL → 0:

V (z, z̄)V (0, 0) ∼ A

z2hL z̄2hR

[

1 +
2hL

b
z2
[

t(0, 0) + T (0) log(m2|z|2)
]

+ · · ·
]

, (D.8)
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provided the parameter b, defined as

b ≡ − lim
cL→0

cL

λ(cL)
= − 1

λ′(0)
, (D.9)

is finite. As cL → 0 the two point functions of the pair (T, t) become:

〈T (z)T (0)〉 = 0; 〈T (z)t(0, 0)〉 =
b

2z4
; (D.10)

〈t(z, z̄)t(0, 0)〉 =
1

z4
lim

cL→0

[

− b

2λ
+

B

λ2
− 2λB log(m2|z2|) + · · ·

]

.

For this to be well-defined as cL → 0,

B(cL) =
bλ

2
+ Bmλ2 + O(λ3), (D.11)

and therefore

〈t(z, z̄)t(0, 0)〉 =
Bm − b log(m2|z|2)

z4
. (D.12)

The logarithmic pair (T, t) thus indeed has the anticipated two-point function structure

given in (D.1). We are interested in the case where cR 6= 0, and thus there is no such

degeneration in the anti-holomorphic sector. Note that

〈T̄ (z̄)t(0, 0)〉 = 0. (D.13)

Recall that the constant Bm can be changed by a redefinition of t; choosing t → t−BmT/b

removes the non-logarithmic term in the two point function (D.12).

E Warped AdS

The metric of global AdS3 can be written in ‘warped’ form as:

ds2 = − cosh2(σ)dτ2 +
1

4
dσ2 + (du + sinh(σ)dτ)2 (E.1)

We can define:

z = 2e−σ/2 σ = 2 log(z/2) (E.2)

after which the metric becomes:

ds2 =
dz2

z2
− dτ2 + du2 +

(

4

z2
− z2

4

)

dudτ. (E.3)

In this coordinate system it is manifest that this metric is conformally compact. Namely,

z can be used as the defining function: in agreement with the discussion in section 3, z has

a single zero at z = 0 and the metric:

z2ds2 = dz2 + 4dudτ + . . . (E.4)

is a non-degenerate three-dimensional metric that extends smoothly to z = 0.
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On the other hand, the metric of spacelike warped AdS can be written as:

ds2 =
(

− cosh2(σ)(ν2 +3)+4ν2 sinh2(σ)
)

dτ2 +
dσ2

ν2 + 3
+4ν2du2 +8ν2 sinh(σ)dudτ, (E.5)

with ν = µ/3. After the coordinate transformation:

σ = −
√

ν2 + 3 log(z) (E.6)

it becomes asymptotically of the form:

ds2 =
dz2

z2
+ 3(ν2 − 1)z−2

√
ν2+3dτ2 + 8ν2z−

√
ν2+3dudτ + . . . (E.7)

As z → 0, we find that the terms have a different pole structure and therefore this metric

cannot be made regular by multiplication with the usual defining function z, unless ν2 = 1

(which is AdS). Furthermore, the leading term in the induced metric at slices of constant

z is proportional to dτ2 and so it is degenerate. Thus the spacetime with metric (E.5) is

not conformally compact. Notice that the same conclusion holds for any spacetime whose

metric asymptotes to (E.5).

For timelike warped AdS the metric has the form:

ds2 =
(

cosh2(σ)(ν2 + 3) − 4ν2 sinh2(σ)
)

du2 +
dσ2

ν2 + 3
− 4ν2dτ2 − 8ν2 sinh(σ)dudτ. (E.8)

This is just spacelike warped AdS with the replacement τ → iu and u → iτ and we can

immediately draw the same conclusions as for spacelike warped AdS.

For null warped AdS the metric is given by:

ds2 =
dz2

z2
+

dudv

z2
± du2

z4
, (E.9)

which is a solution of TMG with µ = 3 or ν = 1. We again find a different pole structure for

the different terms, as well as a singular leading-order term in the induced metric on slices

of constant z. Again, no good defining function exists that makes the three-dimensional

metric regular on the slice z = 0 and this manifold is not conformally compact.
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